Patents by Inventor Luc R. M. Martens

Luc R. M. Martens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020179491
    Abstract: The invention provides a method for converting an olefinic hydrocarbon feedstock to propylene comprising: contacting a hydrocarbon feedstock under catalytic cracking conditions with a catalyst comprising a catalyst selected from the group consisting of SAPO catalysts, MeAPO catalysts, MeASPO catalysts, ELAPO catalysts, ELASPO catalysts, rare earth exchanged catalysts from any of the preceding groups, and mixtures thereof, under cracking conditions to selectively produce propylene. The invention further provides a method for stabilizing a catalyst to steam from the foregoing group by ion exchange with a rare earth metal.
    Type: Application
    Filed: May 8, 2002
    Publication date: December 5, 2002
    Inventors: Tan-Jen Chen, S. Mark Davis, Luc R. M. Martens, Marcel J. G. Janssen, Philip A. Ruziska
  • Patent number: 6482999
    Abstract: A method for converting oxygenates to light olefins.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: November 19, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Shun C. Fung, James R. Lattner, Stephen N. Vaughn, Richard B. Hall, Hsiang-Ning Sun, Ron G. Searle, Luc R. M. Martens
  • Patent number: 6455748
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: September 24, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Publication number: 20020111523
    Abstract: This invention is to a method of oligomerizing an olefin feed stream. The olefin feed stream contains at least one C2 to C12 olefin to obtain an olefin feed stream and has less than 1,000 ppm by weight oxygenated hydrocarbon. The olefin is oligomerized by contacting with an acid based oligomerization catalyst.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 15, 2002
    Inventors: Georges M.K. Mathys, Stephen H. Brown, Hubertus Joseph Beckers, Raphael Frans Caers, John Stephen Godsmark, Luc R.M. Martens, John Richard Shutt, Eddy T. Van Driessche
  • Patent number: 6429348
    Abstract: The invention provides a method for converting an olefinic hydrocarbon feedstock to propylene comprising: contacting a hydrocarbon feedstock under catalytic cracking conditions with a catalyst comprising a catalyst selected from the group consisting of SAPO catalysts, MeAPO catalysts, MeASPO catalysts, ElAPO catalysts, ElASPO catalysts, rare earth exchanged catalysts from any of the preceding groups, and mixtures thereof, under cracking conditions to selectively produce propylene. The invention further provides a method for stabilizing a catalyst to steam from the foregoing group by ion exchange with a rare earth metal.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: August 6, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Tan-Jen Chen, S. Mark Davis, Luc R. M. Martens, Marcel J. G. Janssen, Philip A. Ruziska
  • Patent number: 6395674
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: May 28, 2002
    Assignee: Exxon Mobil Chemical Patents, Inc.
    Inventors: Shun C. Fung, Marcel J. G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert E. Schweizer, Luc R. M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Publication number: 20020055433
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Application
    Filed: August 15, 2001
    Publication date: May 9, 2002
    Inventors: Shun C. Fung, Marcel J.G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Cornelius W.M Van Oorschot, Luc R.M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Publication number: 20020016522
    Abstract: Disclosed is a molecular sieve catalyst which contains molecular sieve-containing attrition particles and virgin molecular sieve, the attrition particles having been recycled from a catalyst manufacture process or from a reaction system. The catalyst can be used in a variety of catalytic reaction processes. A desired process is making olefins from an oxygenate feedstock. The recovery and use of the attrition particles in the catalyst is beneficial in minimizing waste, thereby reducing problems relating to both environmental and economic constraints.
    Type: Application
    Filed: June 27, 2001
    Publication date: February 7, 2002
    Inventors: Stephen N. Vaughn, Luc R.M. Martens, Keith H. Kuechler, Albert E. Schwiezer
  • Publication number: 20020013505
    Abstract: A method for converting oxygenates to light olefins.
    Type: Application
    Filed: February 17, 1999
    Publication date: January 31, 2002
    Inventors: SHUN C. FUNG, JAMES R. LATTNER, STEPHEN N. VAUGHN, RICHARD B. HALL, HSIANG-NING SUN, RON G. SEARLE, LUC R.M. MARTENS
  • Patent number: 6316683
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Publication number: 20010020119
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Application
    Filed: January 12, 2001
    Publication date: September 6, 2001
    Inventors: Marcel J.G. Janssen, Cornelius W.M. Van Oorschot, Shun C. Fung, Luc R.M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 6080303
    Abstract: The present invention provides a process for improving the catalytic activity of small and medium pore acidic zeolite catalyst which comprises the steps of treating a zeolite with a phosphorus compound to form a phosphorus treated zeolite and combining the phosphorus treated zeolite with AlPO.sub.4. Optionally the phosphorus treated zeolite is calcined. The step of combining the zeolite with AlPO.sub.4 may optionally be followed by steaming the combined catalyst. Examples of useful phosphorus containing compounds useful in treating the zeolite include phosphoric acid, ammonium mono or dihydrogen phosphate, organic phosphites, and organophosphines. Preferably the phosphorus containing compound is an ammonium acid phosphate. An additional alternate embodiment provides a process for increasing the hydrothermal stability of a zeolite catalyst which comprises first treating a zeolite with a phosphorus containing compound then blending with AlPO.sub.4.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: June 27, 2000
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Guang Cao, Luc R. M. Martens, Jeffrey L. White, Tan-Jen Chen, Matu J. Shah
  • Patent number: 5406002
    Abstract: An organophosphine-treated titanium-containing zeolite is a catalyst for hydrocarbon oxidation.
    Type: Grant
    Filed: February 25, 1994
    Date of Patent: April 11, 1995
    Assignee: Exxon-Chemical Patents Inc.
    Inventors: Luc R. M. Martens, Georges M. K. Mathys