Patents by Inventor Luc Robert

Luc Robert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153207
    Abstract: A sample may be generated for each point of a plurality of point clouds that represent a scene. A visibility ray may be created between each point of the plurality of point clouds and the one or more sources that generated the point. One or more sample, if any, that intersect a visibility ray may be identified. Each point corresponding to an intersecting sample may be determined to represent or likely represent an unwanted object if the visibility ray is from a different source that did not generate the point and the point is not coherent with any points generated by the different source. A visibility score for each point determined to represent or likely represent an unwanted object may be adjusted. A model may be generated, wherein the model does not include the unwanted object in the scene but includes the permanent object with see-through characteristics in the scene.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 9, 2024
    Inventors: Cyril Novel, Jean-Philippe Pons, Luc Robert
  • Patent number: 11911218
    Abstract: A diagnostic ultrasound system has a 2D array transducer which is operated with 1×N patches, patches which are only a single element wide. The “N” length of the patches extends in the elevation direction of a scanned 2D image plane, with the single element width extending in the lateral (azimuth) direction. Focusing is done along each patch in the elevation direction by a microbeamformer, and focusing in the lateral (azimuth) direction is done by the system beamformer. The minimal width of each patch in the azimuth direction enables the production of images highly resolved in the azimuthal plane of a 2D image, including the reception of highly resolved multilines for high frame rate imaging.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: February 27, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Man Nguyen, Jean-Luc Robert, Ramon Quido Erkamp, Sheng-Wen Huang, Bernard Joseph Savord, Emil George Radulescu
  • Patent number: 11790606
    Abstract: In example embodiments, techniques are provided for calculating camera rotation using translations between sensor-derived camera positions (e.g., from GPS) and pairwise information, producing a sensor-derived camera pose that may be integrated in an early stage of SfM reconstruction. A software process of a photogrammetry application may obtain metadata including sensor-derived camera positions for a plurality of cameras for a set of images and determine optical centers based thereupon. The software process may estimate unit vectors along epipoles from a given camera of the plurality of cameras to two or more other cameras. The software process then may determine a camera rotation that best maps unit vectors defined based on differences in the optical centers to the unit vectors along the epipoles. The determined camera rotation and the sensor-derived camera position form a sensor-derived camera pose that may be returned and used.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: October 17, 2023
    Assignee: Bentley Systems, Incorporated
    Inventor: Luc Robert
  • Publication number: 20230007962
    Abstract: In example embodiments, techniques are provided for calculating camera rotation using translations between sensor-derived camera positions (e.g., from GPS) and pairwise information, producing a sensor-derived camera pose that may be integrated in an early stage of SfM reconstruction. A software process of a photogrammetry application may obtain metadata including sensor-derived camera positions for a plurality of cameras for a set of images and determine optical centers based thereupon. The software process may estimate unit vectors along epipoles from a given camera of the plurality of cameras to two or more other cameras. The software process then may determine a camera rotation that best maps unit vectors defined based on differences in the optical centers to the unit vectors along the epipoles. The determined camera rotation and the sensor-derived camera position form a sensor-derived camera pose that may be returned and used.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 12, 2023
    Inventor: Luc Robert
  • Patent number: 11467272
    Abstract: In an image compressing ultrasound system, for generating an imaging sample, delays are applied transducer-element-wise to respective time samples. The delayed samples are summed coherently in time, the coherently summed delays being collectively non-focused. An image is sparsified based on imaging samples and, otherwise than merely via said imaging samples, on angles (236) upon which respectively the delays for the generating of the imaging samples are functionally dependent. An image-compressing processor (120) may minimize a first p-norm of a first matrix which is a product of two matrices the content of one representing the image in a compression basis. The minimizing is subject to a constraint that a second p-norm of a difference between a measurement matrix and a product of an image-to-measurement-basis transformation matrix, an image representation dictionary matrix, and the matrix representing the image in the compression basis does not exceed an allowed-error threshold.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Jean-Luc Robert
  • Patent number: 11366208
    Abstract: In some embodiments, ultrasound receive beamforming yields beamformed samples, based upon which spatially intermediate pixels (232, 242, 244) are dynamically reconstructed. The samples have been correspondingly derived from acquisition through respectively different acoustic windows (218, 220). The reconstructing is further based on temporal weighting of the samples. In some embodiments, the sampling is via synchronized ultrasound phased-array data acquisition from a pair of side-by-side, spaced apart (211) acoustic windows respectively facing opposite sides of a central region (244) to be imaged. In particular, the pair is used interleavingly to dynamically scan jointly in a single lateral direction in imaging the region. The acquisition in the scan is, along a synchronization line (222) extending laterally across the region, monotonically progressive in that direction. Rotational scans respectively from the window pair are synchronizable into a composite scan of a moving object.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: June 21, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Emil George Radulescu, Sanghamithra Korukonda, Jean-luc Robert
  • Publication number: 20220160333
    Abstract: A segmentation selection system includes a transducer configured to transmit and receive imaging energy for imaging a subject. A signal processor is configured to process imaging data received to generate processed image data. A segmentation module is configured to generate a plurality of segmentations of the subject based on features or combinations of features of the imaging data and/or the processed image data. A selection mechanism is configured to select one of the plurality of segmentations that best meets a criterion for performing a task. A graphical user interface permits a user to select features or combinations of features of imaging data or processed image data to generate the plurality of segmentations and to select a segmentation that best meets criterion for performing a task.
    Type: Application
    Filed: October 13, 2021
    Publication date: May 26, 2022
    Inventors: SHYAM BHARAT, AMIR MOHAMMAD TAHMASEBI MARAGHOOSH, JEAN-LUC ROBERT, DIRK BINNEKAMP
  • Patent number: 11331070
    Abstract: A system includes an acoustic probe and an acoustic imaging machine. The acoustic probe includes a substrate with first and second principal surfaces, a device insertion port with an opening passing through the substrate from the first principal surface to the second principal surface, and an array of acoustic transducer elements supported by the substrate and disposed around the device insertion port. The acoustic imaging machine may systematically vary the size and/or position of the active acoustic aperture of the probe by providing transmit signals to selected acoustic transducer elements to cause the array to transmit an acoustic probe signal to an area of interest and may record a feedback signal of the transmit signals from an acoustic receiver provided at a distal end of an interventional device passed through the device insertion port into the area of interest to find an active acoustic aperture having optimal acoustic performance.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: May 17, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ramon Quido Erkamp, Man Nguyen, Jean-Luc Robert, Sheng-Wen Huang, Shyam Bharat, Jochen Kruecker
  • Patent number: 11266374
    Abstract: An acoustic probe connectable to an imaging system. The acoustic probe has a substrate with first and second principal surfaces, at least one device insertion port comprising an opening passing through the substrate from the first principal surface to the second principal surface, and an array of acoustic transducer elements supported by the substrate and disposed around the at least one device insertion port. The acoustic probe comprising an instrument guide disposed within the device insertion port, the instrument guide being configured to selectively allow the interventional device to move freely within the device insertion port and to selectively lock the interventional device within the device insertion port in response to a user input via a user interface connected to the acoustic probe.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 8, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ramon Quido Erkamp, Man Nguyen, Jean-Luc Robert, Sheng-Wen Huang, Jochen Kruecker
  • Patent number: 11199625
    Abstract: An ultrasonic diagnostic imaging system and method translates an aperture across an array transducer which is less that the size of the array. At each aperture location a transmit beam is focused above, or alternatively below, the array and a region of interest being scanned from the aperture location, resulting in broad insonification of the region of interest. At the lateral ends of the array the aperture is no longer translated but the focal point of the transmit beam is translated from the same aperture position, preferably with tilting of the beam direction. Multiple receive beams are processed in response to each transmit event and the overlapping receive beams and echo locations are spatially combined to produce synthetic transmit focusing over the center of the image field and noise reduction by spatial compounding at the lateral ends of the image field.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: December 14, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jean-Luc Robert, Man Nguyen, Ramon Quido Erkamp, Sheng-Wen Huang, Emil George Radulescu
  • Patent number: 11191522
    Abstract: An ultrasound exposure safety processor is configured for spatially relating respective definitions of an imaging zone, and an extended dead-tissue zone that includes both a dead-tissue zone and a surrounding margin. Based on whether a push pulse focus is to be within the extended dead-tissue zone, the processor automatically decides a level of acoustic power with which the pulse is to be produced. If the pulse focus is to be within the extended dead-tissue zone, the pulse may be produced with a mechanical index (MI), a thermal index (TI), and/or a spatial-peak-temporal-average intensity (IspTA) that exceeds respectively 1.9, 6.0 and 720 milliwatts per square centimeter. The imaging zone may be definable interactively to dynamically trigger the deciding and the producing, with push pulse settings being dynamically derived automatically. A display of multiple push pulse sites allows user manipulation of spatial definition indicia to dynamically control displacement tracking.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: December 7, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hua Xie, Shiwei Zhou, Jean-luc Robert, Vijay Thakur Shamdasani, Sheng-Wen Huang
  • Patent number: 11166700
    Abstract: A segmentation selection system includes a transducer (14) configured to transmit and receive imaging energy for imaging a subject. A signal processor (26) is configured to process imaging data received to generate processed image data. A segmentation module (50) is configured to generate a plurality of segmentations of the subject based on features or combinations of features of the imaging data and/or the processed image data. A selection mechanism (52) is configured to select one of the plurality of segmentations that best meets a criterion for performing a task.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: November 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Amir Mohammad Tahmasebi Maraghoosh, Jean-Luc Robert, Dirk Binnekamp
  • Patent number: 11017594
    Abstract: In an example embodiment, techniques are provided for locking a region of fully-connected large-scale multi-dimensional spatial data (e.g., a large-scale 3-D mesh) defined by a bounding box. A region is associated with a lock state (e.g., exclusive or sharable). Clients may access the fully-connected large-scale multi-dimensional spatial data based on a comparison of the bounding box of the requested spatial data to the bounding boxes of other client's locks and their lock state.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: May 25, 2021
    Assignee: Bentley Systems, Incorporated
    Inventors: Elenie Godzaridis, Luc Robert, Jean-Philippe Pons, Stephane Nullans
  • Patent number: 10930087
    Abstract: In an example embodiment, techniques are provided for concurrently editing fully-connected large-scale multi-dimensional spatial data (e.g., a large-scale 3-D mesh) by ensuring that edits performed by multiple clients are non-conflicting edits that are “trivially” mergeable (e.g. mergeable simply via cut-and-paste operations). Conflicting edits may be prevented by locks (e.g., region-based locks). Non-conflicting edits that require “non-trivial” merging may be prevented through the use of marked read-only boundaries.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: February 23, 2021
    Assignee: Bentley Systems, Incorporated
    Inventors: Elenie Godzaridis, Luc Robert, Jean-Philippe Pons, Stephane Nullans
  • Publication number: 20200357171
    Abstract: In an example embodiment, techniques are provided for locking a region of fully-connected large-scale multi-dimensional spatial data (e.g., a large-scale 3-D mesh) defined by a bounding box. A region is associated with a lock state (e.g., exclusive or sharable). Clients may access the fully-connected large-scale multi-dimensional spatial data based on a comparison of the bounding box of the requested spatial data to the bounding boxes of other client's locks and their lock state.
    Type: Application
    Filed: June 13, 2019
    Publication date: November 12, 2020
    Inventors: Elenie Godzaridis, Luc Robert, Jean-Philippe Pons, Stephane Nullans
  • Publication number: 20200357189
    Abstract: In an example embodiment, techniques are provided for concurrently editing fully-connected large-scale multi-dimensional spatial data (e.g., a large-scale 3-D mesh) by ensuring that edits performed by multiple clients are non-conflicting edits that are “trivially” mergeable (e.g. mergeable simply via cut-and-paste operations). Conflicting edits may be prevented by locks (e.g., region-based locks). Non-conflicting edits that require “non-trivial” merging may be prevented through the use of marked read-only boundaries.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 12, 2020
    Inventors: Elenie Godzaridis, Luc Robert, Jean-Philippe Pons, Stephane Nullans
  • Patent number: 10746859
    Abstract: An apparatus and method of imaging an imaging region (7) employ an acoustic transducer array (10?) to produce image data for the imaging region (7), wherein there are one or more obstructions (15-1, 15-2, 15-3) between the acoustic transducer array (10?) and at least a portion (5) of the imaging region (7). One or more processors exploit redundancy in transmit/receive pair paths among the acoustic transducers in the acoustic transducer array (10?) to compensate for missing image data of the imaging region (7) due to the one or more obstructions (15-1, 15-2, 15-3), and produce an image of the imaging region (7) from the compensated image data.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: August 18, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Jean-Luc Robert, Emil George Radulescu, Francois Guy Gerard Marie Vignon
  • Patent number: 10588595
    Abstract: A device and method for initializing an ultrasound beamformer to image an object based on a tool-pose-estimation of the object include an ultrasound imaging array and an object. The ultrasound imaging array operates with the beamformer. The object has a sensor external to the ultrasound imaging array. The tool-pose-estimation includes an estimation of the location and/or the orientation of the object. The tool-pose-estimation of the object is derived by a processor that receives an output of the sensor disposed on the object external to the imaging array that operates with the beamformer. The processor supplies the tool-pose-estimation to the beamformer to initialize the beamformer using the tool-pose-estimation for operating the imaging array.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: March 17, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, Ameet Kumar Jain, Jean-Luc Robert
  • Patent number: 10588604
    Abstract: Ultrasound motion-estimation includes issuing multiple ultrasound pulses, spaced apart from each other in a propagation direction of a shear wave, to track axial motion caused by the wave. The wave has been induced by an axially-directed push. Based on the motion, autocorrelation is used to estimate an axial displacement. The estimate is used as a starting point (234) in a time-domain based motion tracking algorithm for modifying the estimate so as to yield a modified displacement. The modification can constitute an improvement upon the estimate. The issuing may correspondingly occur from a number of acoustic windows, multiple ultrasound imaging probes imaging respectively via the windows. The autocorrelation, and algorithm, operate specifically on the imaging acquired via the pulses used in tracking the motion caused by the wave that was induced by the push, the push being a single push.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: March 17, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hua Xie, Shiwei Zhou, Jean-Luc Robert, Vijay Thakur Shamdasani
  • Patent number: 10593104
    Abstract: Methods, systems, and apparatus including medium-encoded computer program products for generating and visualizing 3D scenes include, in one aspect, a method including: obtaining site data acquired by one or more capture devices, wherein the site data comprises data sets corresponding to two or more locations about a physical site, and each respective data set comprises (i) imaging data of the physical site, (ii) coordinate data for the imaging data, and (iii) time metadata for the imaging data; reconstructing a series of three dimensional (3D) modeled scenes of the physical site from the site data using the imaging data, the coordinate data, and the time metadata; receiving a request having associated position, orientation and time data; and generating, in response to the request, output for display of a portion of the 3D modeled scenes to represent the physical site based on the position, orientation and time data.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 17, 2020
    Assignee: Autodesk, Inc.
    Inventors: Luc Robert, Emmanuel Gallo