Patents by Inventor Luca Peluso

Luca Peluso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916428
    Abstract: This disclosure includes novel ways of implementing a power supply that powers a load. A main battery source produces a main battery voltage; each of multiple auxiliary battery sources in a set produces a respective auxiliary battery voltage. A controller initially sets a battery supply voltage to the main battery voltage, the main battery voltage is supplied to a power converter. The controller then monitors a magnitude of the battery supply voltage and adjusts the battery supply voltage supplied to the power converter based on a comparison of the magnitude of the battery supply voltage with respect to a threshold level. The adjusted battery supply voltage is provided from a serial connection of the main battery source and a first auxiliary battery source in the set.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: February 27, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Luca Peluso, Matthias J. Kasper
  • Publication number: 20230371165
    Abstract: A voltage regulator module includes: power input and output terminals at a same side of the voltage regulator module; a first power stage configured to receive an input voltage from the power input terminal and output a phase current at a switch node of the first power stage, the first power stage including an inductor having a vertical conductor embedded in a magnetic core, the vertical conductor having a first end which is electrically connected to the switch node and a second end opposite the first end; and a first metal clip which electrically connects the second end of the vertical conductor to the power output terminal such that power is delivered to and from the voltage regulator module at the same side of the voltage regulator module. A method of producing the voltage regulator module and electronic assembly that includes the voltage regulator module are also described.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventors: Gerald Deboy, Kok Yau Chua, Angela Kessler, Kennith Kin Leong, Chee Yang Ng, Luca Peluso
  • Publication number: 20230361679
    Abstract: A first partial power converter implementation receives and converts an input voltage into multiple auxiliary voltages including a first auxiliary voltage and a second auxiliary voltage. The first partial power converter produces a first output voltage as a first summation of the first auxiliary voltage and the input voltage; the first partial power converter produces a second output voltage as a second summation of the second auxiliary voltage and the input voltage. A second partial power converter implementation as discussed herein receives a first auxiliary input voltage referenced with respect to an output voltage of the power converter. The second partial power converter also receives a second auxiliary input voltage referenced with respect to the output voltage. The second partial power converter converts the first auxiliary input voltage and the second auxiliary input voltage into the output voltage to power a load.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 9, 2023
    Inventors: Luca Peluso, Matthias J. Kasper, Giuseppe Bernacchia
  • Publication number: 20230318459
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 11716026
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: August 1, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20230187958
    Abstract: This disclosure includes novel ways of implementing a power supply that powers a load. A main battery source produces a main battery voltage; each of multiple auxiliary battery sources in a set produces a respective auxiliary battery voltage. A controller initially sets a battery supply voltage to the main battery voltage, the main battery voltage is supplied to a power converter. The controller then monitors a magnitude of the battery supply voltage and adjusts the battery supply voltage supplied to the power converter based on a comparison of the magnitude of the battery supply voltage with respect to a threshold level. The adjusted battery supply voltage is provided from a serial connection of the main battery source and a first auxiliary battery source in the set.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 15, 2023
    Inventors: LUCA Peluso, Matthias J. Kasper
  • Publication number: 20230124533
    Abstract: This disclosure includes novel ways of implementing a power supply that powers a load. More specifically, a power supply includes a bidirectional power converter and a controller. The controller monitors a magnitude of an input voltage supplied from an input voltage source to a load. Based on a magnitude of the input voltage, the controller switches between a first mode of operating the bidirectional power converter to charge an energy storage resource using (a portion of power provided by) the input voltage and a second mode of producing a backup voltage from the energy storage resource to power the load as a substitute to the input voltage such as when the input voltage is below a threshold value.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Inventors: Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20230095628
    Abstract: A power supply includes a first (main) power converter and a second (auxiliary) power converter disposed in parallel with the first power converter to produce an output voltage to power a dynamic load. The second power converter includes a primary inductive path magnetically coupled to a secondary inductive path. A controller controls a flow of first current through the primary inductive path of the second power converter to control flow of second current supplied by the secondary inductive path to the dynamic load. During steady state conditions, the first power converter produces the output voltage while the second power converter is deactivated. During transient load conditions, the second power converter provides current boost capability to maintain a magnitude of the output voltage within a desired range.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Darryl Tschirhart
  • Patent number: 11569681
    Abstract: This disclosure includes novel ways of implementing a power supply that powers a load. More specifically, a power supply includes a bidirectional power converter and a controller. The controller monitors a magnitude of an input voltage supplied from an input voltage source to a load. Based on a magnitude of the input voltage, the controller switches between a first mode of operating the bidirectional power converter to charge an energy storage resource using (a portion of power provided by) the input voltage and a second mode of producing a backup voltage from the energy storage resource to power the load as a substitute to the input voltage such as when the input voltage is below a threshold value.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: January 31, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 11562845
    Abstract: According to one configuration, an inductor device includes a first electrically conductive path; a second electrically conductive path, the first electrically conductive path electrically isolated from the second electrically conductive path; first material, the first material operative to space the first electrically conductive path with respect to the second electrically conductive path; and second material. The second material has a substantially higher magnetic permeability than the first material. An assembly of the first electrically conductive path, the second electrically conductive path, and the first material resides in a core of the second material.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 24, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Matthias J. Kasper, Kennith K. Leong, Luca Peluso
  • Publication number: 20220367111
    Abstract: According to one configuration, a fabricator receives magnetic permeable material and fabricates an apparatus to include a multi-dimensional arrangement of electrically conductive paths to extend through the magnetic permeable material. Each of the electrically conductive paths is a respective inductive path.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Luca Peluso, Matthias J. Kasper, Kennith K. Leong, Gerald DEBOY
  • Publication number: 20220367109
    Abstract: According to one configuration, a fabricator fabricates a core of a circuit component to include magnetic permeable material. The fabricator further produces the circuit component to include multiple electrically conductive paths extending through the core of the magnetic permeable material. In one arrangement, the multiple electrically conductive paths include a first electrically conductive path and a second electrically conductive path. The fabricator fabricates the circuit component and, more specifically, the core of the magnetic permeable material to include at least one cutaway portion operative to reduce inductive coupling between the first electrically conductive path and the second electrically conductive path disposed in the core.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Inventors: Luca Peluso, Matthias J. Kasper, Kennith K. Leong, Gerald DEBOY
  • Publication number: 20220276685
    Abstract: According to one configuration, an inductor device includes a core fabricated from multiple different types of magnetically permeable material. The inductor device includes an electrically conductive path extending through the core. A magnetic permeability of the core varies in magnitude depending on a distance with respect to the electrically conductive path.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Luca Peluso, Gerald Deboy, Matthias J. Kasper, Kennith K. Leong
  • Publication number: 20220181907
    Abstract: This disclosure includes novel ways of implementing a power supply that powers a load. More specifically, a power supply includes a bidirectional power converter and a controller. The controller monitors a magnitude of an input voltage supplied from an input voltage source to a load. Based on a magnitude of the input voltage, the controller switches between a first mode of operating the bidirectional power converter to charge an energy storage resource using (a portion of power provided by) the input voltage and a second mode of producing a backup voltage from the energy storage resource to power the load as a substitute to the input voltage such as when the input voltage is below a threshold value.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 9, 2022
    Inventors: Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 11165347
    Abstract: A power supply includes a power source, a primary inductive path, and a secondary inductive path. The primary inductive path coupled to receive input current from the power source. The secondary inductive path is magnetically coupled to the primary inductive path to adjust current flow through the primary inductive path, the primary inductive path operable to produce an output voltage.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 2, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20210257924
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Patent number: 11050355
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: June 29, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy
  • Publication number: 20210118604
    Abstract: According to one configuration, an inductor device includes a first electrically conductive path; a second electrically conductive path, the first electrically conductive path electrically isolated from the second electrically conductive path; first material, the first material operative to space the first electrically conductive path with respect to the second electrically conductive path; and second material. The second material has a substantially higher magnetic permeability than the first material. An assembly of the first electrically conductive path, the second electrically conductive path, and the first material resides in a core of the second material.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Matthias J. Kasper, Kennith K. Leong, Luca Peluso
  • Publication number: 20210119538
    Abstract: A power supply includes a power source, a primary inductive path, and a secondary inductive path. The primary inductive path coupled to receive input current from the power source. The secondary inductive path is magnetically coupled to the primary inductive path to adjust current flow through the primary inductive path, the primary inductive path operable to produce an output voltage.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Debby
  • Publication number: 20210119552
    Abstract: According to one configuration, an inductor device comprises: core material and one or more electrically conductive paths. The core material is magnetically permeable and surrounds (envelops) the one or more electrically conductive paths. Each of the electrically conductive paths extends through the core material of the inductor device from a first end of the inductor device to a second end of the inductor device. The magnetically permeable core material is operative to confine (guide, carry, convey, localize, etc.) respective magnetic flux generated from current flowing through a respective electrically conductive path. The core material stores the magnetic flux energy (i.e., first magnetic flux) generated from the current flowing through the first electrically conductive path.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Kennith K. Leong, Matthias J. Kasper, Luca Peluso, Gerald Deboy