Patents by Inventor Luca Salvi

Luca Salvi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11629308
    Abstract: This disclosure relates to a lubricating oil (e.g., gear oil) for use in an electric or hybrid vehicle. The lubricating oil has a composition including one or more lubricating oil base stocks as a major component, and one or more lubricating oil additives, as a minor component. The one or more lubricating oil base stocks include at least one Group IV base oil, or at least one Group V base oil. The lubricating oil has a kinematic viscosity (KV100) from 1 cSt to 7 cSt at 100° C. as determined by ASTM D-445, and an electrical conductivity at room temperature of less than 15,000 pS/m as determined by ASTM D-2624. This disclosure also relates to methods for producing a lubricating oil for a transmission, gear train, gear set, gear box, or gears of an electric vehicle powertrain and methods for improving energy efficiency, while maintaining or improving wear control.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: April 18, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Luca Salvi, Zhisheng Gao, Abigail R. Van Wassen, Martin N. Webster
  • Patent number: 11220648
    Abstract: Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 11, 2022
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Eugine Choi, Matthew W. Boland, Zhisheng Gao, Luca Salvi, Shamel Merchant, Bruce W. Crawley
  • Publication number: 20210238492
    Abstract: Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 5, 2021
    Inventors: Eugine Choi, Matthew W. Boland, Zhisheng Gao, Luca Salvi, Shamel Merchant, Bruce W. Crawley
  • Patent number: 10829708
    Abstract: A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine with relatively high oil consumption, lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains a lubricating oil base stock comprising at least one ester including at least one group selected from the group consisting of Formula (1), Formula (2), Formula (3) and Formula (4) below or at least one ester having at least 25% of its carbons in the form of methyl groups: The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 10, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Zhisheng Gao, Eugine Choi, Luca Salvi, Matthew W. Boland
  • Publication number: 20200277542
    Abstract: This disclosure relates to a lubricating oil (e.g., gear oil) for use in an electric or hybrid vehicle. The lubricating oil has a composition including one or more lubricating oil base stocks as a major component, and one or more lubricating oil additives, as a minor component. The one or more lubricating oil base stocks include at least one Group IV base oil, or at least one Group V base oil. The lubricating oil has a kinematic viscosity (KV100) from 1 cSt to 7 cSt at 100° C. as determined by ASTM D-445, and an electrical conductivity at room temperature of less than 15,000 pS/m as determined by ASTM D-2624. This disclosure also relates to methods for producing a lubricating oil for a transmission, gear train, gear set, gear box, or gears of an electric vehicle powertrain and methods for improving energy efficiency, while maintaining or improving wear control.
    Type: Application
    Filed: January 16, 2020
    Publication date: September 3, 2020
    Inventors: Luca Salvi, Zhisheng Gao, Abigail R. Van Wassen, Martin N. Webster
  • Publication number: 20200140775
    Abstract: A method for improving wear protection, while maintaining or improving deposit control and cleanliness, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and one or more lubricating oil additives including at least one borated detergent, as a minor component. The at least one borated detergent comprises a borated alkaline earth metal sulfonate. The borated alkaline earth metal sulfonate is present in an amount sufficient to provide a total boron concentration of about 300 parts per million or greater in the formulated oil. Wear protection is improved, and deposit control and cleanliness are maintained or improved, as compared to wear protection, deposit control and cleanliness achieved using a lubricating oil containing a borated additive other than the at least one borated alkaline earth metal sulfonate.
    Type: Application
    Filed: October 29, 2019
    Publication date: May 7, 2020
    Inventors: Jordan C. Smith, Smruti Dance, Douglas E. Deckman, Luca Salvi
  • Patent number: 10604720
    Abstract: A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by introducing to a combustion chamber of the engine from 0.1 to 5% by volume of the gasoline used a lubricating oil as a formulated oil, said formulated oil having a composition comprising (i) a major amount of a lubricating oil base stock comprising at least 80% by weight of one branched ester having at least 15% of the total carbons in the form of methyl groups, and (ii) a minor amount of at least one ashless amine phosphate antiwear additive.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 31, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Zhisheng Gao, Luca Salvi, Eugine Choi, Matthew W. Boland, Andrew E. Taggi, Andrew D. Satterfield
  • Patent number: 10584292
    Abstract: Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 10, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Eugine Choi, Matthew W. Boland, Zhisheng Gao, Luca Salvi, Shamel Merchant, Bruce W. Crawley
  • Patent number: 10550344
    Abstract: Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Reseach and Engineering Company
    Inventors: Eugine Choi, Matthew W. Boland, Zhisheng Gao, Luca Salvi, Shamel Merchant, Bruce W. Crawley
  • Publication number: 20200024538
    Abstract: A method for improving oxidative stability of a lubricating oil in a diesel engine, in which biodiesel fuel is used with diesel fuel in the diesel engine, by using as the lubricating oil a formulated oil. The formulated oil has a composition including at least one Group V lubricating oil base stock. The at least one Group V lubricating oil base stock is present in an amount from 1 to 75 weight percent, based on the total weight of the lubricating oil. Oxidative stability is improved in a diesel engine lubricated with the lubricating oil, as compared to oxidative stability achieved in a diesel engine lubricated with a lubricating oil not having the at least one Group V lubricating oil base stock, as determined by a CEC L-109-16 Bio-Diesel Oxidation Bench test. The lubricating oils are useful as passenger vehicle engine oil (PVEO) products or commercial vehicle engine oil (CVEO) products.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 23, 2020
    Inventors: Douglas E. Deckman, Smruti A. Dance, Mark P. Hagemeister, Luca Salvi, Nicole Wallace
  • Publication number: 20190338213
    Abstract: A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by introducing to a combustion chamber of the engine from 0.1 to 5% by volume of the gasoline used a lubricating oil as a formulated oil, said formulated oil having a composition comprising (i) a major amount of a lubricating oil base stock comprising at least 80% by weight of one branched ester having at least 15% of the total carbons in the form of methyl groups, and (ii) a minor amount of at least one ashless amine phosphate antiwear additive.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Zhisheng Gao, Luca Salvi, Eugine Choi, Matthew W. Boland, Andrew E. Taggi, Andrew D. Satterfield
  • Publication number: 20190127655
    Abstract: A method for improving wear control, while maintaining or improving deposit control and cleanliness, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and specific combinations of low soap detergents, dispersants, and/or mixtures thereof, as a minor component. The low soap detergents include alkaline earth metal salicylates, alkaline earth metal sulfonates, or mixtures thereof, all having the same or different total base number (TBN). The total amount of soap delivered by the low soap detergent is less than 0.60 weight percent of the lubricating oil. The dispersants include borated and/or non-borated polyisobutylene succinimide (PIMA) having a basic nitrogen content of 1% or greater. The lubricating oils are useful in internal combustion engines.
    Type: Application
    Filed: October 4, 2018
    Publication date: May 2, 2019
    Inventors: Smruti A. DANCE, Steven KENNEDY, Jordan C. Smith, Luca SALVI
  • Publication number: 20190093040
    Abstract: A method for improving viscosity control, while maintaining or improving deposit control, of a lubricating oil in an engine or other mechanical component lubricated with the lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and at least one polymeric aminic antioxidant, as a minor component. The at least one polymeric aminic antioxidant is the polymerization reaction product of one or more unsubstituted or hydrocarbyl-substituted diphenyl amines, one or more unsubstituted or hydrocarbyl-substituted phenyl naphthyl amines, or both one or more of unsubstituted or hydrocarbyl-substituted diphenylamine with one or more unsubstituted or hydrocarbyl-substituted phenyl naphthylamine. The lubricating oil base stock is present in an amount from 1 to 85 weight percent and the at least one polymeric aminic antioxidant is present in an amount from 0.1 to 5 weight percent.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 28, 2019
    Inventors: Douglas E. DECKMAN, Smruti A. DANCE, Luca SALVI
  • Publication number: 20190062668
    Abstract: An ashless lubricating oil having a lubricating oil base stock as a major component, and a mixture of (i) at least one ashless antiwear additive, (ii) at least one ashless detergent, and (iii) at least one aminic antioxidant, as minor components. The lubricating oil base stock is a monoester obtained by a) reacting one Guerbet alcohol of 8 to 20 carbon atoms with a Guerbet acid, a linear or branched acid of 6 to 20 carbon atoms or b) reacting one linear or branched alcohol with at least 6 to 20 carbon atoms with a Guerbet acid of 8 to 20 carbon atoms. The lubricating oil base stock is present in an amount from 30 to 99.8 wt. % of the oil. A method for improving oxidative stability and high temperature stability of a lubricating oil in an engine or other mechanical component lubricated with the lubricating oil by using the ashless lubricating oil.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Inventors: Zhisheng GAO, Luca SALVI, Eugine CHOI, Matthew W. BOLAND
  • Publication number: 20190062667
    Abstract: An ashless lubricating oil having a lubricating oil base stock as a major component, and a mixture of (i) at least one ashless antiwear additive, (ii) at least one ashless detergent, and (iii) at least one aminic antioxidant, as minor components. The lubricating oil base stock is a branched polyol ester. The lubricating oil base stock is present in an amount from about 30 to about 99.8 mass percent, based on the total mass of the ashless lubricating oil. A method for improving oxidative stability and high temperature stability of a lubricating oil in an engine or other mechanical component lubricated with the lubricating oil by using the ashless lubricating oil. The ashless lubricating oil is useful as a passenger vehicle engine oil (PVEO).
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Inventors: Zhisheng GAO, Luca SALVI, Eugine CHOI, Matthew W. BOLAND
  • Patent number: 10119090
    Abstract: A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains (i) a lubricating oil base stock comprising at least one ester including at least one group selected from the group consisting of Formula (1), Formula (2), and Formula (3): The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 6, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jason Z. Gao, Eugine Choi, Matthew W. Boland, Luca Salvi
  • Patent number: 10119093
    Abstract: A lubricant composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine lubricated with a formulated oil. The formulated oil has a composition including at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A fuel composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine by using a fuel additive composition in a gasoline fuel composition. The fuel additive composition contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: November 6, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jason Z. Gao, Eugine Choi, Matthew W. Boland, Luca Salvi
  • Publication number: 20180171253
    Abstract: A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine with relatively high oil consumption, lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains a lubricating oil base stock comprising at least one ester including at least one group selected from the group consisting of Formula (1), Formula (2), Formula (3) and Formula (4) below or at least one ester having at least 25% of its carbons in the form of methyl groups: The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 21, 2018
    Inventors: Zhisheng Gao, Eugine Choi, Luca Salvi, Matthew W. Boland
  • Publication number: 20180134975
    Abstract: Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
    Type: Application
    Filed: October 20, 2017
    Publication date: May 17, 2018
    Inventors: Eugine CHOI, Matthew W. BOLAND, Zhisheng GAO, Luca SALVI, Shamel MERCHANT, Bruce W. CRAWLEY
  • Publication number: 20180134978
    Abstract: Naphtha boiling range compositions are provided that can have improved combustion properties (relative to the research octane number of the composition) in spark ignition engines and/or compression ignition engines. The improved combustion properties can be achieved by controlling the total combined amounts of n-paraffins and isoparaffins that include a straight-chain propyl group (R1—CH2—CH2—CH2—R2). For such a straight-chain propyl group, R2 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin. R1 can correspond to a hydrogen atom, making the straight-chain propyl group a terminal n-propyl group; or R1 can correspond to any convenient CxHy group that can appear in a paraffin or isoparaffin.
    Type: Application
    Filed: October 20, 2017
    Publication date: May 17, 2018
    Inventors: Eugine CHOI, Matthew W. BOLAND, Zhisheng GAO, Luca SALVI, Shamel MERCHANT, Bruce W. CRAWLEY