Patents by Inventor Luca Valli

Luca Valli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841378
    Abstract: A rotation rate sensor, including at least: one oscillating mass, deflectable in a drive direction and in a detection direction oriented perpendicularly to the drive direction; one drive circuit for prompting a defined oscillatory movement of the oscillating mass in the drive direction; one circuit for detecting a measuring signal, which corresponds to the deflection of the oscillating mass in the detection direction; and one read-out circuit for reading out and pre-processing the measuring signal. The read-out circuit includes a demodulator, with which a useful signal and a quadrature signal are extractable from the measuring signal. The read-out circuit includes a sigma-delta A/D converter. An offset voltage is feedable to the sigma-delta A/D converter, which is selected in such a way that tonal artifacts in the frequency spectrum of the digitized useful signal are shifted into a frequency range outside of the bandwidths of the useful signal to be expected.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: December 12, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Luca Valli, Andrea Visconti, Francesco Diazzi
  • Patent number: 11591209
    Abstract: A method for operating a capacitive MEMS sensor. The method includes: supplying a defined electrical potential on a deflectably mounted, seismic mass of the MEMS sensor; capacitively inducing a vibrational motion of the seismic mass with the aid of a clocked electrical control voltage; compensating for fluctuations in the supplied electrical potential on the seismic mass caused by the clocked electrical control voltage, by selectively charging and/or discharging an electrical storage element connected to the seismic mass in accordance with the frequency of the clocked electrical control voltage.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: February 28, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Francesco Diazzi, Andrea Visconti, Luca Valli
  • Publication number: 20220252650
    Abstract: A readout circuit for a capacitive differential sensor including periodic output signals. The readout circuit includes: one capacitance-to-voltage converter for output signals of the sensor; and one feedback circuit including a sampling unit and a filter unit, the sampling unit being configured to sample a differential signal of two oppositely-phased output signals of the capacitance-to-voltage converter and to generate a sampled differential signal, the filter unit being configured to average the sampled differential signals and to generate an averaged differential signal, and the feedback circuit being configured to feed the averaged differential signal as feedback into the capacitance-to-voltage converter. A sensor system including a readout circuit is also described.
    Type: Application
    Filed: January 21, 2022
    Publication date: August 11, 2022
    Inventors: Andrea Visconti, Francesco Diazzi, Luca Valli
  • Publication number: 20220024755
    Abstract: A method for operating a capacitive MEMS sensor. The method includes: supplying a defined electrical potential on a deflectably mounted, seismic mass of the MEMS sensor; capacitively inducing a vibrational motion of the seismic mass with the aid of a clocked electrical control voltage; compensating for fluctuations in the supplied electrical potential on the seismic mass caused by the clocked electrical control voltage, by selectively charging and/or discharging an electrical storage element connected to the seismic mass in accordance with the frequency of the clocked electrical control voltage.
    Type: Application
    Filed: January 20, 2020
    Publication date: January 27, 2022
    Inventors: Francesco Diazzi, Andrea Visconti, Luca Valli
  • Publication number: 20210293843
    Abstract: A rotation rate sensor, including at least: one oscillating mass, deflectable in a drive direction and in a detection direction oriented perpendicularly to the drive direction; one drive circuit for prompting a defined oscillatory movement of the oscillating mass in the drive direction; one circuit for detecting a measuring signal, which corresponds to the deflection of the oscillating mass in the detection direction; and one read-out circuit for reading out and pre-processing the measuring signal. The read-out circuit includes a demodulator, with which a useful signal and a quadrature signal are extractable from the measuring signal. The read-out circuit includes a sigma-delta A/D converter. An offset voltage is feedable to the sigma-delta A/D converter, which is selected in such a way that tonal artifacts in the frequency spectrum of the digitized useful signal are shifted into a frequency range outside of the bandwidths of the useful signal to be expected.
    Type: Application
    Filed: February 25, 2021
    Publication date: September 23, 2021
    Inventors: Luca Valli, Andrea Visconti, Francesco Diazzi
  • Patent number: 10348326
    Abstract: In accordance with an embodiment, a digital microphone interface circuit includes a delta-sigma analog-to-digital converter (ADC) having an input configured to be coupled to a microphone, a digital lowpass filter coupled to an output of the delta-sigma ADC, and a digital sigma-delta modulator coupled to an output of the digital lowpass filter. The delta-sigma ADC, the digital lowpass filter, and the digital sigma-delta modulator are configured to operate at different sampling frequencies.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies AG
    Inventors: Elmar Bach, Dietmar Straeussnigg, Luca Valli
  • Publication number: 20190123762
    Abstract: In accordance with an embodiment, a digital microphone interface circuit includes a delta-sigma analog-to-digital converter (ADC) having an input configured to be coupled to a microphone, a digital lowpass filter coupled to an output of the delta-sigma ADC, and a digital sigma-delta modulator coupled to an output of the digital lowpass filter. The delta-sigma ADC, the digital lowpass filter, and the digital sigma-delta modulator are configured to operate at different sampling frequencies.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 25, 2019
    Inventors: Elmar Bach, Dietmar Straeussnigg, Luca Valli
  • Patent number: 10250999
    Abstract: A circuit for biasing a MEMS microphone includes a first group of serially-coupled transistors coupled between a first node and a second node, a second group of serially-coupled transistors coupled between the first node and the second node, and a voltage divider circuit coupled to the second node having a number of outputs, a first group of outputs being coupled to corresponding control nodes associated with the first group of serially-coupled transistors, and a second group of outputs different from the first group of outputs coupled to corresponding control nodes associated with the second group of serially-coupled transistors, the control nodes being either bulk nodes or gate nodes.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 2, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Francesco Polo, Richard Gaggl, Benno Muehlbacher, Luca Valli
  • Publication number: 20190090066
    Abstract: A circuit for biasing a MEMS microphone includes a first group of serially-coupled transistors coupled between a first node and a second node, a second group of serially-coupled transistors coupled between the first node and the second node, and a voltage divider circuit coupled to the second node having a number of outputs, a first group of outputs being coupled to corresponding control nodes associated with the first group of serially-coupled transistors, and a second group of outputs different from the first group of outputs coupled to corresponding control nodes associated with the second group of serially-coupled transistors, the control nodes being either bulk nodes or gate nodes.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Francesco Polo, Richard Gaggl, Benno Muehlbacher, Luca Valli
  • Patent number: 10171916
    Abstract: According to an embodiment, a circuit includes a high-? resistor including a plurality of semiconductor junction devices coupled in series and a plurality of additional capacitances formed in parallel with the plurality of semiconductor junction devices. Each semiconductor junction device of the plurality of semiconductor junction devices includes a parasitic doped well capacitance configured to insert a parasitic zero in a noise transfer function of the high-? resistor. Each additional capacitance of the plurality of additional capacitances is configured to adjust a parasitic pole in the noise transfer function of the high-? resistor in order to compensate for the parasitic zero.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: January 1, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Luca Valli, Benno Muehlbacher, Richard Gaggl
  • Publication number: 20170318393
    Abstract: According to an embodiment, a circuit includes a high-? resistor including a plurality of semiconductor junction devices coupled in series and a plurality of additional capacitances formed in parallel with the plurality of semiconductor junction devices. Each semiconductor junction device of the plurality of semiconductor junction devices includes a parasitic doped well capacitance configured to insert a parasitic zero in a noise transfer function of the high-? resistor. Each additional capacitance of the plurality of additional capacitances is configured to adjust a parasitic pole in the noise transfer function of the high-? resistor in order to compensate for the parasitic zero.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Luca Valli, Benno Muehlbacher, Richard Gaggl
  • Patent number: 9806687
    Abstract: A signal amplification method includes receiving, from a capacitive sensor, a first input signal by a first control terminal of a first transistor, and a second input signal by a first control terminal of a second transistor. The method also includes producing a first output signal, including amplifying a first signal at a first load path terminal of the first transistor using a first inverting amplifier having an output coupled to a resistance network, and producing a second output signal, including amplifying a second signal at a first load path terminal of the second transistor using a second inverting amplifier having an output coupled to the resistance network. The method also includes feeding back the first and second output signal to a second load path terminal of the first transistor and to a second load path terminal of the second transistor via the resistance network according to a pre-determined fraction.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 31, 2017
    Assignee: Infineon Technologies AG
    Inventors: Luca Valli, Benno Muehlbacher, Richard Gaggl
  • Publication number: 20170279425
    Abstract: A signal amplification method includes receiving, from a capacitive sensor, a first input signal by a first control terminal of a first transistor, and a second input signal by a first control terminal of a second transistor. The method also includes producing a first output signal, including amplifying a first signal at a first load path terminal of the first transistor using a first inverting amplifier having an output coupled to a resistance network, and producing a second output signal, including amplifying a second signal at a first load path terminal of the second transistor using a second inverting amplifier having an output coupled to the resistance network. The method also includes feeding back the first and second output signal to a second load path terminal of the first transistor and to a second load path terminal of the second transistor via the resistance network according to a pre-determined fraction.
    Type: Application
    Filed: March 23, 2016
    Publication date: September 28, 2017
    Inventors: Luca Valli, Benno Muehlbacher, Richard Gaggl
  • Patent number: 9253569
    Abstract: In accordance with an embodiment, a cancelation circuit includes a current mirror and a low pass filter. The current mirror includes an input terminal configured to accept an input current comprising a first noise signal, a first mirrored output and a second mirrored output. The low pass filter includes an input coupled to the first mirrored output and an output coupled to the second mirrored output. A sum of a current from the second mirrored output and a current of from the output of the low pass filter includes a phase-inverted version of the first noise signal.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 2, 2016
    Assignee: Infineon Technologies AG
    Inventors: Wilfried Florian, Luca Valli, Richard Gaggl
  • Publication number: 20150181335
    Abstract: In accordance with an embodiment, a cancelation circuit includes a current mirror and a low pass filter. The current mirror includes an input terminal configured to accept an input current comprising a first noise signal, a first mirrored output and a second mirrored output. The low pass filter includes an input coupled to the first mirrored output and an output coupled to the second mirrored output. A sum of a current from the second mirrored output and a current of from the output of the low pass filter includes a phase-inverted version of the first noise signal.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Inventors: Wilfried Florian, Luca Valli, Richard Gaggl