Patents by Inventor Lucas Gsellman

Lucas Gsellman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937889
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by one or more controllers. A navigation system tracks a position of a target anatomy. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target anatomy based on the tracked position of the target anatomy. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 26, 2024
    Assignee: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Publication number: 20210298795
    Abstract: Disclosed herein are techniques including a robotic manipulator including a surgical tool to interface with and rotate the screw about a rotational axis. A haptic device includes an actuator and a rotational interface coupled to the actuator and the rotational interface is manually manipulatable by a hand of an operator. One or more controllers control movement of the robotic manipulator to maintain the rotational axis of the surgical tool along a planned trajectory; autonomously control the surgical tool to rotate the screw at a rotational rate about the rotational axis and to linearly advance the screw at an advancement rate according to a known thread geometry of the screw; obtain a measurement indicative of a present interaction between the screw and the target site; and control the actuator of the haptic device to enable the rotational interface to emulate the present interaction between the screw and the target site.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 30, 2021
    Applicant: MAKO Surgical Corp.
    Inventors: David Gene Bowling, Bojan Gospavic, Christopher W. Jones, Greg McEwan, Lucas Gsellman, Kana Nishimura, Weiyi Ding
  • Publication number: 20210275260
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by one or more controllers. A navigation system tracks a position of a target anatomy. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target anatomy based on the tracked position of the target anatomy. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Patent number: 11033341
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by a controller. A navigation system tracks a position of a target site. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target site based on the tracked position of the target site. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: June 15, 2021
    Assignee: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Publication number: 20190090966
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by a controller. A navigation system tracks a position of a target site. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target site based on the tracked position of the target site. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 28, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman