Patents by Inventor Lucas Harder

Lucas Harder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240008982
    Abstract: The present invention relates to a system for the delivery of an annuloplasty device for restoring a heart valve annulus from a dysfunctional configuration to a working configuration, wherein the annuloplasty device is configured to expand from a pre-set configuration corresponding to the working configuration of the valve annulus, the system comprising a delivery device configured to be detachably coupled to the annuloplasty device, wherein the delivery device comprises a structure configured to expand from a first configuration to a second configuration, wherein the dimensions of the second configuration are substantially the same or greater than the dimensions of the pre-set configuration of the annuloplasty device.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Inventors: Vegard TUSETH, Philip Jon HAARSTAD, Jacob JAEGER, Lucas HARDER, Matt KEILLOR
  • Patent number: 11712335
    Abstract: The invention relates to anchor channels and subannular anchors for a transcatheter heart valve replacement (A61F2/2412), and in particular for an orthogonally delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: August 1, 2023
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, David Holtan, Lucas Harder
  • Publication number: 20220280292
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, Mark CHRISTIANSON, Neelakantan SAIKRISHNAN, Scott KRAMER, Lucas HARDER, David HOLTAN, Craig EKVALL, Cameron VIDLUND
  • Publication number: 20220280296
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Patent number: 11344412
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: May 31, 2022
    Assignee: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Patent number: 11337807
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: May 24, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder
  • Patent number: 11331186
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 17, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder
  • Patent number: 11331105
    Abstract: A device for reducing pulsatile pressure within a vessel to treat heart disease, such as pulmonary hypertension, includes a compliant body structured to expand and contract upon changes in pressure within the vessel, a reservoir structured for holding a fluid therein, and a conduit extending between and fluidly coupling the reservoir and the compliant body, wherein the device includes a graphene-polymer composite designed to resist diffusion of the fluid through the device.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 17, 2022
    Assignee: Aria CV, Inc.
    Inventors: John Gainor, Karl Vollmers, John Scandurra, Lucas Harder, Piramiah Elayaperumal
  • Publication number: 20220096226
    Abstract: The invention relates to anchor channels and subannular anchors for a transcatheter heart valve replacement (A61F2/2412), and in particular for an orthogonally delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Application
    Filed: December 14, 2021
    Publication date: March 31, 2022
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, David HOLTAN, Lucas HARDER
  • Publication number: 20220000614
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, Mark CHRISTIANSON, Neelakantan SAIKRISHNAN, Scott KRAMER, Lucas HARDER, David HOLTAN, Craig EKVALL, Cameron VIDLUND
  • Publication number: 20210402159
    Abstract: An implantable device for reducing pulsatile pressure within a blood vessel is described herein, for example to treat pulmonary hypertension. The implantable device may include a fluid reservoir, a compliant member (e.g., a balloon), and a conduit coupled to the fluid reservoir and the compliant member. Advanced designs for anchoring the compliant member in the blood vessel are described. In addition, enhanced reservoir, conduit, and balloon designs, as well as methods for implanting/using the same, are provided.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 30, 2021
    Applicant: Aria CV, Inc.
    Inventors: Lucas HARDER, Lynn ZWIERS, Karl VOLLMERS, John SCANDURRA, John GAINOR, Hendrik de Hoog, Marc Knutson, Katherine SOOJIAN, Miles WING
  • Patent number: 11202706
    Abstract: The invention relates to anchor channels and subannular anchors for a transcatheter heart valve replacement (A61F2/2412), and in particular for an orthogonally delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: December 21, 2021
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, David Holtan, Lucas Harder
  • Patent number: 11179239
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: November 23, 2021
    Assignee: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Lucas Harder, Craig Ekvall
  • Publication number: 20210353412
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Publication number: 20210244533
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: March 5, 2021
    Publication date: August 12, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Chad Ferrin, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Publication number: 20210236280
    Abstract: The invention relates to anchor channels and subannular anchors for a transcatheter heart valve replacement (A61F2/2412), and in particular for an orthogonally delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Application
    Filed: April 21, 2021
    Publication date: August 5, 2021
    Inventors: Mark CHRISTIANSON, Robert Vidlund, David Holtan, Lucas Harder
  • Publication number: 20210220134
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: February 4, 2021
    Publication date: July 22, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Publication number: 20210186693
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, I, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Publication number: 20200046369
    Abstract: A device for reducing pulsatile pressure within a vessel to treat heart disease, such as pulmonary hypertension, includes a compliant body structured to expand and contract upon changes in pressure within the vessel, a reservoir structured for holding a fluid therein, and a conduit extending between and fluidly coupling the reservoir and the compliant body, wherein the device includes a graphene-polymer composite designed to resist diffusion of the fluid through the device.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 13, 2020
    Applicant: Aria CV, Inc.
    Inventors: John GAINOR, Karl VOLLMERS, John SCANDURRA, Lucas HARDER, Piramiah ELAYAPERUMAL
  • Publication number: 20190328516
    Abstract: A braided support structure that folds upon release from a delivery device wherein said fold is at least partially effected by varying the pic angle of the braids at locations where the folding is desired.
    Type: Application
    Filed: July 10, 2019
    Publication date: October 31, 2019
    Applicant: HLT, Inc.
    Inventor: Lucas Harder