Patents by Inventor Lucas Pedersen Parizzi

Lucas Pedersen Parizzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230279365
    Abstract: The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
    Type: Application
    Filed: December 20, 2022
    Publication date: September 7, 2023
    Inventors: Verônica Leite QUEIROZ, Lucas Pedersen PARIZZI, Iuri Estrada GOUVEA, Debora Noma OKAMOTO, Rafael Victório Carvalho GUIDO, Alessandro Silva NASCIMENTO, Igor POLIKARPOV
  • Patent number: 11746361
    Abstract: The present disclosure provides methods for genetically modifying microbes to produce a microbe capable of simultaneous consumption of xylose and glucose to increase the productivity output of desired chemical products. The disclosure further provides modified bacteria that are capable of simultaneous consumption of xylose and glucose, and compositions comprising the microbes.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 5, 2023
    Assignee: BRASKEM S.A.
    Inventors: Veronica Maria Rodege Gogola Kolling, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 11530391
    Abstract: The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: December 20, 2022
    Assignee: BRASKEM S.A.
    Inventors: Verônica Leite Queiroz, Lucas Pedersen Parizzi, Iuri Estrada Gouvea, Debora Noma Okamoto, Rafael Victório Carvalho Guido, Alessandro Silva Nascimento, Igor Polikarpov
  • Patent number: 10941454
    Abstract: In alternative embodiments, provided are non-natural or genetically engineered vinylisomerase-dehydratase enzymes, including alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases. In alternative embodiments, provided are non-natural or genetically engineered polypeptides having an activity comprising, for example, a vinylisomerase-dehydratase, an alkenol dehydratase, a linalool dehydratase and/or a crotyl alcohol dehydratase activity, or a combination thereof. In alternative embodiments, also provided are non-natural or genetically engineered nucleic acids (polynucleotides) encoding polypeptides described herein, expression or cloning vehicles comprising or having contained therein nucleic acids as described herein, and non-natural or genetically engineered cells comprising or having contained therein nucleic acids as described herein. In alternative embodiments, also provided are methods for making various organic compounds, including methyl vinyl carbinol and butadiene.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: March 9, 2021
    Assignees: GENOMATICA, INC., BRASKEM S.A.
    Inventors: Stephanie J. Culler, Robert J. Haselbeck, Harish Nagarajan, Iuri Estrada Gouvea, Daniel Johannes Koch, Mateus Schreiner Garcez Lopes, Lucas Pedersen Parizzi
  • Patent number: 10941424
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: March 9, 2021
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20200318146
    Abstract: The present disclosure provides methods for genetically modifying microbes to produce a microbe capable of simultaneous consumption of xylose and glucose to increase the productivity output of desired chemical products. The disclosure further provides modified bacteria that are capable of simultaneous consumption of xylose and glucose, and compositions comprising the microbes.
    Type: Application
    Filed: April 6, 2020
    Publication date: October 8, 2020
    Inventors: Veronica Maria Rodege Gogola KOLLING, Ane Fernanda Beraldi ZEIDLER, Lucas Pedersen PARIZZI
  • Patent number: 10774348
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 10774347
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20200283806
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG), or optionally MEG and one or more co-product, from one or more hexose feedstock. The present application also relates to recombinant microorganisms useful in the biosynthesis of glycolic acid (GA), or optionally GA and one or more co-product, from one or more hexose feedstock. The present application relates to recombinant microorganisms useful in the biosynthesis of xylitol, or optionally xylitol and one or more co-product, from one or more hexose feedstock. Also provided are methods of producing MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product, from one or more hexose feedstock using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or the products MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product.
    Type: Application
    Filed: February 20, 2020
    Publication date: September 10, 2020
    Inventors: Daniel Johannes KOCH, Lucas Pedersen PARIZZI, Felipe GALZERANI
  • Publication number: 20200208160
    Abstract: The present disclosure provides methods of modulating the flux of carbon through the monoethylene glycol (MEG) biosynthesis pathway and one or more C3 compound biosynthesis pathways by expressing enzymes that are essential for improving C3 compounds and modulating other genetic aspects of MEG and C3 compound biosynthesis. The disclosure is further drawn to modified microbes comprising the disrupted sequences and overexpressed sequences, and compositions thereof.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Ane Fernanda Beraldi ZEIDLER, Beatriz Leite MAGALHAES, Lucas Pedersen PARIZZI, Veronica Maria Rodege Gogola KOLLING
  • Publication number: 20190309266
    Abstract: The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 10, 2019
    Inventors: Verônica Leite QUEIROZ, Lucas Pedersen PARIZZI, Iuri Estrada GOUVEA, Debora Noma OKAMOTO, Rafael Victório Carvalho GUIDO, Alessandro Silva NASCIMENTO, Igor POLIKARPOV
  • Patent number: 10273505
    Abstract: The present disclosure generally relates to methods of using microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene and products and processes derived therefrom.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: April 30, 2019
    Assignee: BRASKEM S.A.
    Inventors: Mateus Schreiner Garcez Lopes, Avram Michael Slovic, Iuri Estrada Gouvea, Johana Rincones Perez, Lucas Pedersen Parizzi
  • Publication number: 20190010479
    Abstract: In alternative embodiments, provided are non-natural or genetically engineered vinylisomerase-dehydratase enzymes, including alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases. In alternative embodiments, provided are non-natural or genetically engineered polypeptides having an activity comprising, for example, a vinylisomerase-dehydratase, an alkenol dehydratase, a linalool dehydratase and/or a crotyl alcohol dehydratase activity, or a combination thereof. In alternative embodiments, also provided are non-natural or genetically engineered nucleic acids (polynucleotides) encoding polypeptides described herein, expression or cloning vehicles comprising or having contained therein nucleic acids as described herein, and non-natural or genetically engineered cells comprising or having contained therein nucleic acids as described herein. In alternative embodiments, also provided are methods for making various organic compounds, including methyl vinyl carbinol and butadiene.
    Type: Application
    Filed: May 26, 2016
    Publication date: January 10, 2019
    Inventors: Stephanie J. CULLER, Robert J. HASELBECK, Harish NAGARAJAN, Iuri Estrada GOUVEA, Daniel Johannes KOCH, Mateus Schreiner Garcez LOPES, Lucas Pedersen PARIZZI
  • Publication number: 20180346936
    Abstract: The present disclosure generally relates to methods of using microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene and products and processes derived therefrom.
    Type: Application
    Filed: July 23, 2018
    Publication date: December 6, 2018
    Inventors: Mateus Schreiner Garcez Lopes, Avram Michael Slovic, Iuri Estrada Gouvea, Johana Rincones Perez, Lucas Pedersen Parizzi
  • Patent number: 10059963
    Abstract: The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene. Also provided are methods of using the microorganisms in industrial processes including, for use in the production of butadiene and products derived therefrom.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 28, 2018
    Assignee: BRASKEM S.A.
    Inventors: Mateus Schreiner Garcez Lopes, Avram Michael Slovic, Iuri Estrada Gouvea, Johana Rincones Perez, Lucas Pedersen Parizzi
  • Publication number: 20180179558
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Application
    Filed: October 6, 2017
    Publication date: June 28, 2018
    Inventors: Daniel Johannes Koch, Mateus Schreiner LOPES, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20180023101
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Application
    Filed: October 6, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Johannes KOCH, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Publication number: 20170260551
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 14, 2017
    Inventors: Daniel Johannes KOCH, Mateus Schreiner LOPES, Ane Fernanda Beraldi ZEIDLER, Lucas Pedersen PARIZZI
  • Patent number: 9518273
    Abstract: The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene. Also provided are methods of using the microorganisms in industrial processes including, for use in the production of butadiene and products derived therefrom.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 13, 2016
    Inventors: Mateus Schreiner Garcez Lopes, Avram Michael Slovic, Iuri Estrada Gouvea, Johana Rincones Perez, Lucas Pedersen Parizzi
  • Publication number: 20160032325
    Abstract: The present disclosure generally relates to microorganisms that comprise one or more polynucleotides coding for enzymes in one or more pathways that catalyze a conversion of a fermentable carbon source to butadiene. Also provided are methods of using the microorganisms in industrial processes including, for use in the production of butadiene and products derived therefrom.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 4, 2016
    Inventors: Mateus Schreiner Garcez Lopes, Avram Michael Slovic, Iuri Estrada Gouvea, Johana Rincones Perez, Lucas Pedersen Parizzi