Patents by Inventor Luciano Henrique Apponi

Luciano Henrique Apponi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132894
    Abstract: Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 25, 2024
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Young Jin Cho
  • Publication number: 20240109931
    Abstract: Among other things, the present disclosure provides designed APOC3 oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 4, 2024
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Hanna Maria Wisniewska-wrona, Xiayun Cheng, Young Jin Cho
  • Publication number: 20240093186
    Abstract: The disclosure provides, e.g., compositions, systems, and methods for targeting, editing, modifying, or manipulating a host cell's genome at one or more locations in a DNA sequence in a cell, tissue, or subject. Gene modifying systems for treating cystic fibrosis, e.g., in subjects having a mutation resulting in F508del, are described.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 21, 2024
    Inventors: Robert Charles Altshuler, Anne Helen Bothmer, Daniel Raymond Chee, Cecilia Giovanna Silvia Cotta-Ramusino, Kyusik Kim, Randi Michelle Kotlar, Gregory David McAllister, Aamir Mir, Ananya Ray, Nathaniel Roquet, Carlos Sanchez, Barrett Ethan Steinberg, Robert James Citorik, William Edward Salomon, William Querbes, Luciano Henrique Apponi, Zhan Wang
  • Publication number: 20240084334
    Abstract: The disclosure provides, e.g., compositions, systems, and methods for targeting, editing, modifying, or manipulating a host cell's genome at one or more locations in a DNA sequence in a cell, tissue, or subject. Gene modifying systems for treating alpha-1 antitrypsin deficiency (AATD) are described.
    Type: Application
    Filed: September 18, 2023
    Publication date: March 14, 2024
    Inventors: Robert Charles Altshuler, Anne Helen Bothmer, Daniel Raymond Chee, Cecilia Giovanna Silvia Cotta-Ramusino, Kyusik Kim, Randi Michelle Kotlar, Gregory David McAllister, Ananya Ray, Nathaniel Roquet, Carlos Sanchez, Barrett Ethan Steinberg, William Edward Salomon, Robert James Citorik, William Querbes, Luciano Henrique Apponi, Zhan Wang
  • Publication number: 20240082429
    Abstract: The disclosure provides, e.g., compositions, systems, and methods for targeting, editing, modifying, or manipulating a host cell's genome at one or more locations in a DNA sequence in a cell, tissue, or subject. Gene modifying systems for treating phenylketonuria (PKU) are described.
    Type: Application
    Filed: October 26, 2023
    Publication date: March 14, 2024
    Inventors: Robert Charles Altshuler, Anne Helen Bothmer, Daniel Raymond Chee, Cecilia Giovanna Silvia Cotta-Ramusino, Kyusik Kim, Randi Michelle Kotlar, Gregory David McAllister, Ananya Ray, Nathaniel Roquet, Carlos Sanchez, Barrett Ethan Steinberg, William Edward Salomon, Robert James Citorik, William Querbes, Luciano Henrique Apponi, Zhan Wang
  • Publication number: 20240026358
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: March 11, 2022
    Publication date: January 25, 2024
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
  • Publication number: 20230392137
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: September 26, 2022
    Publication date: December 7, 2023
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
  • Publication number: 20230329201
    Abstract: Among other things, the present disclosure provides cells and non-human animals engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, the present disclosure provides cells and non-human animals engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, non-human animals are genetically modified rodents such as mice, rat, etc. In some embodiments, non-human animals are mice. In some embodiments, the present disclosure provides technologies for assessing an agent comprising administering the agent to a cell or non-human animal engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, such a cell or non-human animal is engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, an agent is a pharmaceutical agent. In some embodiments, an agent is or comprises an oligonucleotide.
    Type: Application
    Filed: August 23, 2021
    Publication date: October 19, 2023
    Inventors: Hailin Yang, Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Jack David Godfrey, Naoki Iwanmoto
  • Publication number: 20230220384
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: October 6, 2020
    Publication date: July 13, 2023
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto
  • Patent number: 11603532
    Abstract: Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 14, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Young Jin Cho
  • Patent number: 11597927
    Abstract: Among other things, the present disclosure provides designed PNPLA3 oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or N patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 7, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Luciano Henrique Apponi, Hanna Maria Wisniewska, Xiayun Cheng, Young Jin Cho
  • Publication number: 20210198305
    Abstract: Among other things, the present disclosure provides designed APOC3 oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: June 1, 2018
    Publication date: July 1, 2021
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Hanna Maria Wisniewska, Xiayun Cheng, Young Jin Cho
  • Publication number: 20200190515
    Abstract: Among other things, the present disclosure provides designed PNPLA3 oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: June 1, 2018
    Publication date: June 18, 2020
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Luciano Henrique Apponi, Hanna Maria Wisniewska, Xiayun Cheng, Young Jin Cho
  • Publication number: 20200157545
    Abstract: Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide improved single-stranded RNA interference and/or RNase H-mediated knockdown. Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages) or patterns thereof, conjugation with additional chemical moieties, and/or stereochemistry [e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages)], and/or patterns thereof, can have significant impact on oligonucleotide properties and activities, e.g., RNA interference (RNAi) activity, stability, delivery, etc.
    Type: Application
    Filed: June 1, 2018
    Publication date: May 21, 2020
    Applicants: WAVE LIFE SCIENCES LTD., WAVE LIFE SCIENCES LTD.
    Inventors: Chandra Vargeese, Naoki Iwamoto, David Charles Donnell Butler, Subramanian Marappan, Genliang Lu, Jason Jingxin Zhang, Vinod Vathipadiekal, Maria David Frank-Kamenetsky, Luciano Henrique Apponi, Young Jin Cho