Patents by Inventor Lucy Greetham

Lucy Greetham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240052399
    Abstract: This invention relates to sequence specific electrochemically-labeled oligonucleotide probes for the detection of nucleic acids and methods associated therewith.
    Type: Application
    Filed: May 15, 2023
    Publication date: February 15, 2024
    Inventors: Frank Ray Bowler, Grzegorz Artur Orlowski, Hazel Lucy Greetham, Cheng Zhou, Niall A. Armes, Olaf Piepenburg
  • Patent number: 11649484
    Abstract: This invention relates to sequence specific electrochemically-labeled oligonucleotide probes for the detection of nucleic acids and methods associated therewith.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: May 16, 2023
    Assignee: ABBOTT DIAGNOSTICS SCARBOROUGH, INC.
    Inventors: Frank Ray Bowler, Grzegorz Artur Orlowski, Hazel Lucy Greetham, Cheng Zhou, Niall A. Armes, Olaf Piepenburg
  • Publication number: 20220290199
    Abstract: A mycological biopolymer product consisting entirely of fungal mycelium is made by inoculating a nutritive substrate with a selected fungus in a sealed environment except for a void space, which space is subsequently filled with a network of undifferentiated fungal mycelium. The environmental conditions for producing the mycological biopolymer product, i.e. a high carbon dioxide (CO2) content (from 5% to 7% by volume) and an elevated temperature (from 85° F. to 95° F.), prevent full differentiation of the fungus into a mushroom. There are no stipe, cap, or spores produced. The biopolymer product grows into the void space of the tool, filling the space with an undifferentiated mycelium chitin-polymer, which is subsequently extracted from the substrate and dried.
    Type: Application
    Filed: February 3, 2022
    Publication date: September 15, 2022
    Inventors: Lucy Greetham, Gavin R. McIntyre, Eben Bayer, Jacob Winiski, Sarah Araldi
  • Patent number: 11359074
    Abstract: A mycological biopolymer material is subjected to treatment in one or more solutions that work to enhance and/or retain the inherent material properties of the material. In one embodiment, the solution is an organic solution; in another embodiment, the solution is an organic solvent with a salt; in another embodiment, the solution is an organic solvent phenol and/or polyphenol; and in another embodiment, a series of such solutions is used.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 14, 2022
    Assignee: ECOVATIVE DESIGN LLC
    Inventors: Jessica Kaplan-Bie, Gavin R. McIntyre, Lucy Greetham, Ian Bonesteel, Alex Carlton, Eben Bayer
  • Patent number: 11277979
    Abstract: A mycological biopolymer product consisting entirely of fungal mycelium is made by inoculating a nutritive substrate with a selected fungus in a sealed environment except for a void space, which space is subsequently filled with a network of undifferentiated fungal mycelium. The environmental conditions for producing the mycological biopolymer product, i.e. a high carbon dioxide (CO2) content (from 5% to 7% by volume) and an elevated temperature (from 85° F. to 95° F.), prevent full differentiation of the fungus into a mushroom. There are no stipe, cap, or spores produced. The biopolymer product grows into the void space of the tool, filling the space with an undifferentiated mycelium chitin-polymer, which is subsequently extracted from the substrate and dried.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 22, 2022
    Assignee: Ecovative Design LLC
    Inventors: Lucy Greetham, Gavin R. McIntyre, Eben Bayer, Jacob Winiski, Sarah Araldi
  • Publication number: 20190136300
    Abstract: This invention relates to sequence specific electrochemically-labeled oligonucleotide probes for the detection of nucleic acids and methods associated therewith.
    Type: Application
    Filed: February 24, 2017
    Publication date: May 9, 2019
    Inventors: Frank Ray Bowler, Grzegorz Artur Orlowski, Hazel Lucy Greetham, Cheng Zhou, Niall A. Armes, Olaf Piepenburg
  • Publication number: 20150033620
    Abstract: A mycological biopolymer product consisting entirely of fungal mycelium is made by inoculating a nutritive substrate with a selected fungus in a sealed environment except for a void space, which space is subsequently filled with a network of undifferentiated fungal mycelium. The environmental conditions for producing the mycological biopolymer product, i.e. a high carbon dioxide (CO2) content (from 5% to 7% by volume) and an elevated temperature (from 85° F. to 95° F.), prevent full differentiation of the fungus into a mushroom. There are no stipe, cap, or spores produced. The biopolymer product grows into the void space of the tool, filling the space with an undifferentiated mycelium chitin-polymer, which is subsequently extracted from the substrate and dried.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 5, 2015
    Inventors: Lucy Greetham, Gavin R. McIntyre, Eben Bayer, Jacob Winiski, Sarah Araldi
  • Publication number: 20130309755
    Abstract: A method of producing a fungal leachate solution comprises the steps of obtaining a feedstock of lignocellulosic substrate; colonizing the substrate with a selected fungus; and adding water to the colonized substrate to form a liquid medium containing at least one of sugar alcohol, a phenolic compound and a fatty acid. A leachate from the liquid medium can be used as a liquid culture medium to culture fungi.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 21, 2013
    Inventors: Gavin McIntyre, Jacob Winiski, Sue Van Hook, Lucy Greetham, Courtney Hart