Patents by Inventor Luhua Jiang

Luhua Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10052613
    Abstract: A hierarchical porous material contains primary pore aggregates. The primary pore aggregates combine to form the secondary pore aggregates. The secondary pore aggregates connect to each other formed the hierarchical porous material. There are primary pores on the primary pore aggregates wherein the diameter of primary pore is 5-500 nm. There are secondary pores on the secondary pore aggregates wherein the diameter of secondary pore is 1-5 ?m. The hierarchical porous material is used as oxygen reduction reaction (ORR) catalysts or photocatalysts having a significantly improved catalytic activity.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: August 21, 2018
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Gongquan Sun, Lizhi Yuan, Luhua Jiang
  • Publication number: 20160367969
    Abstract: This invention belongs to the field of nanomaterials. Specifically relates to a kind of hierarchical porous material and its preparation method. A kind of hierarchical porous material is disclosed, and said hierarchical porous material is composed of primary pore aggregates, the primary pore aggregates get together and formed the secondary pore aggregates, then the secondary pore aggregates connect to each other formed the hierarchical porous material; there are primary pores on said primary pore aggregates wherein the diameter of primary pore is 5-500 nm; there are secondary pores on said secondary pore aggregates wherein the diameter of secondary pore is 1-5 ?m. Compared with existing technology, said hierarchical porous materials of this invention has apparent advantages of large surface area, high usage of precious metal and so on, which facilitating its mass transfer reaction when used as oxygen reduction reaction catalysts and other special applications.
    Type: Application
    Filed: December 19, 2014
    Publication date: December 22, 2016
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Gongquan SUN, Lizhi YUAN, Luhua JIANG
  • Patent number: 8895467
    Abstract: An Ag/MnyOx/C catalyst is disclosed, wherein MnyOx is one of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO2 with the mass content of MnO2 in the mixture of Mn3O4 and MnO2 being 0.01-99.9%. The catalyst is obtained by pyrolyzing AgMnO4 at a high temperature. The preparation method comprises two steps: (1) preparing AgMnO4 crystal as the precursor; (2) preparing the Ag/MnyOx/C catalyst. The catalyst has advantages such as high oxygen reduction reaction (ORR) catalytic activity in an alkaline environment, good stability, abundant availability and low cost of raw materials, safety, non-toxicity and pollution-free, environmental friendliness, and adaptive capacity for massive production. The catalyst can be used as oxygen reduction catalyst in metal air fuel cell, alkali anion exchange membrane fuel cell and other alkaline environments.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 25, 2014
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Gongquan Sun, Qiwen Tang, Luhua Jiang, Suli Wang
  • Publication number: 20130252806
    Abstract: An Ag/MnyOx/C catalyst is disclosed, wherein MnOyx is one of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO2 with the mass content of MnO2 in the mixture of Mn3O4 and MnO2 being 0.01-99.9%. The catalyst is obtained by pyrolyzing AgMnO4 at a high temperature. The preparation method comprises two steps: (1) preparing AgMnO4 crystal as the precursor; (2) preparing the Ag/MnyOx/C catalyst. The catalyst has advantages such as high oxygen reduction reaction (ORR) catalytic activity in an alkaline environment, good stability, abundant availability and low cost of raw materials, safety, non-toxicity and pollution-free, environmental friendliness, and adaptive capacity for massive production. The catalyst can be used as oxygen reduction catalyst in metal air fuel cell, alkali anion exchange membrane fuel cell and other alkaline environments.
    Type: Application
    Filed: November 30, 2010
    Publication date: September 26, 2013
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Gongquan Sun, Qiwen Tang, Luhua Jiang, Suli Wang
  • Patent number: 7981826
    Abstract: A method of preparing a supported catalyst includes dissolving a cation exchange polymer in alcohol to prepare a solution containing cation exchange polymer; mixing the cation exchange polymer containing solution with a catalytic metal precursor or a solution containing catalytic metal precursor; heating the mixture after adjusting its pH to a predetermined range; adding a reducing agent to the resultant and stirring the solution to reduce the catalytic metal precursor; mixing the resultant with a catalyst support; adding a precipitating agent to the resultant to form precipitates; and filtering and drying the precipitates. The method of preparing a supported catalyst can provide a highly dispersed supported catalyst containing catalytic metal particles with a reduced average size regardless of the type of catalyst support, which provides better catalytic activity than conventional catalysts at the same loading amount of catalytic metal.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: July 19, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan-ho Pak, Hyuk Chang, Dae-jung Yoo, Seol ah Lee, Gongquan Sun, Luhua Jiang, Qin Xin
  • Patent number: 7867940
    Abstract: A method of preparing a supported catalyst includes dissolving a cation exchange polymer in alcohol to prepare a solution containing cation exchange polymer; mixing the cation exchange polymer containing solution with a catalytic metal precursor or a solution containing catalytic metal precursor; heating the mixture after adjusting its pH to a predetermined range; adding a reducing agent to the resultant and stirring the solution to reduce the catalytic metal precursor; mixing the resultant with a catalyst support; adding a precipitating agent to the resultant to form precipitates; and filtering and drying the precipitates. The method of preparing a supported catalyst can provide a highly dispersed supported catalyst containing catalytic metal particles with a reduced average size regardless of the type of catalyst support, which provides better catalytic activity than conventional catalysts at the same loading amount of catalytic metal.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: January 11, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan-ho Pak, Hyuk Chang, Dae-Jong Yoo, Seol ah Lee, Gongguan Sun, Luhua Jiang, Qin Xin
  • Publication number: 20100081034
    Abstract: A method of preparing a supported catalyst includes dissolving a cation exchange polymer in alcohol to prepare a solution containing cation exchange polymer; mixing the cation exchange polymer containing solution with a catalytic metal precursor or a solution containing catalytic metal precursor; heating the mixture after adjusting its pH to a predetermined range; adding a reducing agent to the resultant and stirring the solution to reduce the catalytic metal precursor; mixing the resultant with a catalyst support; adding a precipitating agent to the resultant to form precipitates; and filtering and drying the precipitates. The method of preparing a supported catalyst can provide a highly dispersed supported catalyst containing catalytic metal particles with a reduced average size regardless of the type of catalyst support, which provides better catalytic activity than conventional catalysts at the same loading amount of catalytic metal.
    Type: Application
    Filed: November 10, 2009
    Publication date: April 1, 2010
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Chan-ho PAK, Hyuk Chang, Dae-jung Yoo, Seol ah Lee, Gongquan Sun, Luhua Jiang, Qin Xin