Patents by Inventor Luigi Giuseppe Occhipinti

Luigi Giuseppe Occhipinti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10429335
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: October 1, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Publication number: 20170322170
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Patent number: 9777317
    Abstract: A microfluidic device (1000-1005), comprising: a semiconductor body (2) having a first side (2a) and a second side (2b) opposite to one another, and housing, at the first side, a plurality of wells (4), having a first depth; an inlet region (30) forming an entrance point for a fluid to be supplied to the wells; a main channel (6a) fluidically connected to the inlet region, and having a second depth; and a plurality of secondary channels (6b) fluidically connecting the main channel to a respective well, and having a third depth. The first depth is higher than the second depth, which in turn is higher than the third depth.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 3, 2017
    Assignees: STMicroelectronics S.r.l., bioMérieux S.A.
    Inventors: Giuseppe Emanuele Spoto, Luigi Giuseppe Occhipinti, Cristian Dall'Oglio, Crocifisso Marco Antonio Renna, Laurent Drazek
  • Patent number: 9746439
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 29, 2017
    Assignee: STMicroelectronics S.r.l.
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Patent number: 9588075
    Abstract: The present disclosure relates to a sensor for detecting hydrogen ions in an aqueous solution comprising a support, a reference electrode, a working electrode and a counter electrode supported by said support, the reference electrode being made of a material comprising silver and silver chloride, the counter electrode being made of a conductive material. The working electrode comprises a substrate and a layer made of an inherently electrically conductive polymer of the polythiophene or polyaniline (PANI) or polypyrrole class.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 7, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giovanna Salzillo, Rossana Scaldaferri, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Patent number: 9099529
    Abstract: The present disclosure relates to microstructure devices, in which a conductive pattern is formed on the basis of a conductive polymer material. In order to avoid the deposition and processing of the sacrificial materials and reduce a negative influence of the lithography process on sensitive conductive polymer materials a one-layer patterning sequence is proposed, in which a trench pattern is formed in a dielectric material that is subsequently filled with the conductive polymer material.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: August 4, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vincenza Di Palma, Andrea Di Matteo, Luigi Giuseppe Occhipinti
  • Patent number: 9012259
    Abstract: The present disclosure describes a process strategy for forming bottom gate/bottom contact organic TFTs in CMOS technology by using a hybrid deposition/patterning regime. To this end, gate electrodes, gate dielectric materials and drain and source electrodes are formed on the basis of lithography processes, while the organic semiconductor materials are provided as the last layers by using a spatially selective printing process.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Francesco Foncellino, Giovanna Salzillo, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Patent number: 9006796
    Abstract: A method manufactures a sensor device for sensing a gaseous substance and includes a thin film transistor, which includes a source electrode, a drain electrode and a gate electrode; and an element sensitive to the gaseous substance. In particular, the method includes: forming a first metallic layer on a substrate; defining and patterning the first metallic layer for realizing the gate electrode; depositing a dielectric layer above the gate electrode; depositing a second metallic layer above the layer of dielectric material, defining and patterning the second metallic layer for realizing the source electrode and the drain electrode, and forming the sensitive element by filling a channel region of the thin film transistor with an active layer sensitive to the gaseous substance.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 14, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventor: Luigi Giuseppe Occhipinti
  • Publication number: 20150001076
    Abstract: It is described an integrated gas sensor device comprising a silicon substrate and an oxide layer on the silicon substrate, as well as a working electrode, a counter electrode and a reference electrode, on the oxide layer, the working electrode and the counter electrode having respective active area exposed to an environmental air through at least a plurality of first openings and a plurality of second openings in the oxide layer in correspondence of the working electrode and of the counter electrode, further comprising an electrolyte layer portion and a hydrogel layer portion on the electrolyte layer portion, the electrolyte and hydrogel layer portions having a same size, suitable to cover at least the working, counter and reference electrodes, the hydrogel layer portion acting as a “quasi solid state” water reservoir.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Fabrizio Porro, Valeria Casuscelli, Francesco Foncellino, Giovanna Salzillo, Luigi Giuseppe Occhipinti
  • Publication number: 20140251805
    Abstract: The present disclosure relates to a sensor for detecting hydrogen ions in an aqueous solution comprising a support, a reference electrode, a working electrode and a counter electrode supported by said support, the reference electrode being made of a material comprising silver and silver chloride, the counter electrode being made of a conductive material. The working electrode comprises a substrate and a layer made of an inherently electrically conductive polymer of the polythiophene or polyaniline (PANI) or polypyrrole class.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Giovanna Salzillo, Rossana Scaldaferri, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Publication number: 20140199807
    Abstract: The present disclosure describes a process strategy for forming bottom gate/bottom contact organic TFTs in CMOS technology by using a hybrid deposition/patterning regime. To this end, gate electrodes, gate dielectric materials and drain and source electrodes are formed on the basis of lithography processes, while the organic semiconductor materials are provided as the last layers by using a spatially selective printing process.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 17, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Francesco Foncellino, Giovanna Salzillo, Valeria Casuscelli, Luigi Giuseppe Occhipinti
  • Patent number: 8764997
    Abstract: A method of metal deposition may include chemically modifying a surface of a substrate to make the surface hydrophobic. The method may further include depositing a layer of metal over the hydrophobic surface and masking at least a portion of the deposited metal layer to define a conductive metal structure. The method may also include using an etching agent to etch unmasked portions of the deposited metal layer.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 1, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Fabrizio Porro, Luigi Giuseppe Occhipinti
  • Publication number: 20140084519
    Abstract: The present disclosure relates to mold components and imprint lithography techniques applied on the basis of organic mold materials in order to form polymer microstructure elements. It has been recognized that adapting surface characteristics of at least one mold component may significantly enhance performance of the lithography process, in particular with respect to suppressing residual polymer material, which in conventional strategies may have to be removed on the basis of an additional etch process.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Applicants: Fondazione Istituto Italiano di Tecnologia, STMicroelectronics S.r.l.
    Inventors: Fabrizio Porro, Antonio Scognamiglio, Raffaele Vecchione, Valeria Casuscelli, Andrea Di Matteo, Luigi Giuseppe Occhipinti, Paolo Netti
  • Publication number: 20140087552
    Abstract: The present disclosure relates to microstructure devices, in which a conductive pattern is formed on the basis of a conductive polymer material. In order to avoid the deposition and processing of the sacrificial materials and reduce a negative influence of the lithography process on sensitive conductive polymer materials a one-layer patterning sequence is proposed, in which a trench pattern is formed in a dielectric material that is subsequently filled with the conductive polymer material.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 27, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Vincenza Di Palma, Andrea Di Matteo, Luigi Giuseppe Occhipinti
  • Publication number: 20140038193
    Abstract: A microfluidic device (1000-1005), comprising: a semiconductor body (2) having a first side (2a) and a second side (2b) opposite to one another, and housing, at the first side, a plurality of wells (4), having a first depth; an inlet region (30) forming an entrance point for a fluid to be supplied to the wells; a main channel (6a) fluidically connected to the inlet region, and having a second depth; and a plurality of secondary channels (6b) fluidically connecting the main channel to a respective well, and having a third depth. The first depth is higher than the second depth, which in turn is higher than the third depth.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Applicants: bioMérieux S.A., STMicroelectronics S.r.l.
    Inventors: Giuseppe Emanuele SPOTO, Luigi Giuseppe OCCHIPINTI, Cristian DALL'OGLIO, Crocifisso Marco Antonio RENNA, Laurent DRAZEK
  • Publication number: 20120329213
    Abstract: A semiconductor device may have a thickness, such that the semiconductor devices are not flexible, and may be bonded and electrically coupled on a flexible substrate. After this bonding, the semiconductor device may be thinned so as to be rendered flexible.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 27, 2012
    Applicant: STMicroelectronics S.r.I.
    Inventors: Vincenzo VINCIGUERRA, Luigi Giuseppe OCCHIPINTI
  • Publication number: 20120096928
    Abstract: A method manufactures a sensor device for sensing a gaseous substance and includes a thin film transistor, which includes a source electrode, a drain electrode and a gate electrode; and an element sensitive to the gaseous substance. In particular, the method includes: forming a first metallic layer on a substrate; defining and patterning the first metallic layer for realizing the gate electrode; depositing a dielectric layer above the gate electrode; depositing a second metallic layer above the layer of dielectric material, defining and patterning the second metallic layer for realizing the source electrode and the drain electrode, and forming the sensitive element by filling a channel region of the thin film transistor with an active layer sensitive to the gaseous substance.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventor: Luigi Giuseppe Occhipinti
  • Patent number: 8062976
    Abstract: A method is for forming a vertical interconnection through a dielectric layer between upper and lower electrically conductive layers of an integrated circuit. The method includes forming an opening through the dielectric layer and placing a solidifiable electrically conductive filler into the opening via a printing technique. The solidifiable electrically conductive filler is solidified to thereby form a solidified electrically conducting filler in the opening. A metallization layer is formed over the dielectric layer and the solidified electrically conducting filler to thereby form the vertical interconnection through the dielectric layer between the upper and lower electrically conductive layers of the integrated circuit.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: November 22, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventors: Raffaele Vecchione, Luigi Giuseppe Occhipinti, Nunzia Malagnino, Rossana Scaldaferri, Maria Viviana Volpe
  • Publication number: 20110027986
    Abstract: A method is for forming a vertical interconnection through a dielectric layer between upper and lower electrically conductive layers of an integrated circuit. The method includes forming an opening through the dielectric layer and placing a solidifiable electrically conductive filler into the opening via a printing technique. The solidifiable electrically conductive filler is solidified to thereby form a solidified electrically conducting filler in the opening. A metallization layer is formed over the dielectric layer and the solidified electrically conducting filler to thereby form the vertical interconnection through the dielectric layer between the upper and lower electrically conductive layers of the integrated circuit.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: STMicroelectronics S.r.l.
    Inventors: Raffaele VECCHIONE, Luigi Giuseppe OCCHIPINTI, Nunzia MALAGNINO, Rossana SCALDAFERRI, Maria Viviana VOLPE
  • Publication number: 20110006032
    Abstract: A method of metal deposition may include chemically modifying a surface of a substrate to make the surface hydrophobic. The method may further include depositing a layer of metal over the hydrophobic surface and masking at least a portion of the deposited metal layer to define a conductive metal structure. The method may also include using an etching agent to etch unmasked portions of the deposited metal layer.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 13, 2011
    Applicant: STMicroelectronics S.r.l.
    Inventors: Fabrizio PORRO, Luigi Giuseppe Occhipinti