Patents by Inventor Luis Alberto Zenteno

Luis Alberto Zenteno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090110355
    Abstract: The strain-managed optical waveguide assemblies of the present invention utilize a large-mode-area (LMA) optical fiber that is annealed in a first bending such that the fiber in that configuration has substantially no axial strain. A fiber support member is then used to support the annealed LMA optical fiber in a second bending configuration that forms within the LMA optical fiber an axial strain profile that reduces stimulated Brillouin scattering (SBS) as compared to the first bending configuration, and that also preferably causes the LMA optical fiber to operate in a single mode. The LMA optical fiber may have a double-clad configuration and include a doped core that serves as a gain medium. The strain-managed optical waveguide assembly can then be used to constitute a fiber amplifier that mitigates the SBS penalty associated with high-power fiber-based optical systems.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Jeffery Alan DeMeritt, Stuart Gray, Daniel Warren Hawtof, Luis Alberto Zenteno
  • Publication number: 20090097855
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 16, 2009
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 7502539
    Abstract: An optical fiber including: (i) a silica based, Yb doped core having a first index of refraction n1, said core comprising more than 1 wt % of Yb, said core having less than 5 dB/km loss at a wavelength situated between 1150 nm and 1350 nm and less than 20 dB/km loss at the wavelength of 1380 nm and slope efficiency of over 0.8; and (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 10, 2009
    Assignee: Corning Incorporated
    Inventors: Stuart Gray, Donnell Thaddeus Walton, Ji Wang, Luis Alberto Zenteno
  • Publication number: 20090060435
    Abstract: An optical fiber, comprising: (i) a core, (ii) a cladding surrounding the core, (iii) at least one stress member adjacent the fiber core and situated within the cladding, said stress member comprising silica co-doped with B and F.
    Type: Application
    Filed: July 30, 2008
    Publication date: March 5, 2009
    Inventors: Xin Chen, Stuart Gray, Ming-Jun Li, Donnell Thaddeus Walton, Ji Wang, Luis Alberto Zenteno
  • Patent number: 7463805
    Abstract: An optical fiber, comprising: a core with a first refractive index (n1); a silica based outer cladding surrounding the core, the outer cladding having a refractive index (n), such that the core is substantially surrounded by a gap situated between the core and the outer cladding, the gap containing at least one support structure adjacent to the outer cladding and situated between the outer cladding and the core, wherein the support structure is either hollow or gas filed and is not connected to any other support structure situated within the gap.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: December 9, 2008
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Ji Wang, Luis Alberto Zenteno
  • Publication number: 20080290077
    Abstract: Disclosed are systems and methods for cutting one or more glass sheets. A system is provided comprising a first mirror having a first reflective surface and a second reflective surface that is spaced from and opposes the first reflective surface to define a cavity between the mirrors. An aperture can be defined in the first mirror. Furthermore, a laser beam can be provided that is configured to emit a beam through the aperture into the cavity. Beams reflected in the cavity, in one aspect, define a common focus point through which the glass sheet can be translated to cause the cutting of the glass sheets. A means for translating the glass sheet through the cavity is provided, in one aspect.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 27, 2008
    Inventors: Jeffery Alan DeMeritt, Stuart Gray, Alexander Streltsov, Luis Alberto Zenteno
  • Patent number: 7382957
    Abstract: An optical fiber including: (i) a silica based, rare earth doped core having a first index of refraction n1; and (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2, said cladding having a plurality of stress rods and a plurality of air holes extending longitudinally through the length of said optical fiber; wherein said optical fiber supports a single polarization mode or poses-polarization maintaining properties within the operating wavelength range.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 3, 2008
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ji Wang, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan, Donnell Thaddeus Walton, Luis Alberto Zenteno
  • Publication number: 20080080823
    Abstract: An optical fiber including: (i) a silica based, Yb doped core having a first index of refraction n1, said core comprising more than 1 wt % of Yb, said core having less than 5 dB/km loss at a wavelength situated between 1150 nm and 1350 nm and less than 20 dB/km loss at the wavelength of 1380 nm and slope efficiency of over 0.8; and (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Stuart Gray, Donnell Thaddeus Walton, Ji Wang, Luis Alberto Zenteno
  • Publication number: 20070266738
    Abstract: According to one embodiment a method of making optical fibers comprises: (i) manufacturing a core cane; (ii) situating a plurality of microstructures selected from rods, air filled tubes and glass filed tubes and placing said microstructures adjacent to the core cane, said microstructures forming no more than 3 layers; (iii) placing the core cane with said adjacent microstructures inside a holding clad tube; and (iv) placing interstitial cladding rods inside the holding (clad) tube, thereby forming an assembly comprising a tube containing a core cane, a plurality of microstructures and interstitial cladding rods. The assembly is then drawn into a microstructured cane and an optical fiber is drawn from the microstructured cane. According to several embodiments, the method of making an optical fiber includes providing at least one air hole and at least one stress rod adjacent to the core.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Inventors: Michael Thomas Gallagher, Ming-Jun Li, Joseph Edward McCarthy, Ji Wang, Luis Alberto Zenteno
  • Patent number: 7236672
    Abstract: An optical system comprises an optical fiber with gain producing core with an index of refraction n1, surrounded by at least one cladding with an index of refraction n2, said cladding including at least one index reduced area with an index of refraction n2, such that n1>n2>n2, the core propagating a signal at a spatial fundamental mode at a signal wavelength ?1 and at a power level sufficient to generate optical power at a wavelength ?2, where ?2>?1, and the at least one index reduced area in combination with the core provide has at least one cut-off fundamental spatial mode wavelength ?C, and ?1<?C and ?2>?C.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: June 26, 2007
    Assignee: Corning Incorporated
    Inventors: Donnell Thaddeus Walton, Ji Wang, Luis Alberto Zenteno, Ming-Jun Li
  • Patent number: 7203407
    Abstract: An optical fiber, comprising: (i) a rare earth doped silica based elongated core with a first refractive index (n1) with an aspect ratio of 1:5 to 1; (ii) a silica based moat abutting and at least substantially surrounding the core, the moat having a refractive index n2, wherein n2<n1; (iii) a silica based inner cladding surrounding the moat, the inner cladding having a third refractive index (n3), wherein n1>n3; and n3>n2; (iv) a silica based outer cladding surrounding said inner cladding, the outer cladding having a fourth refractive index (n4), such that n4<n3; the optical fiber exhibits single polarization at the operating wavelength band.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: April 10, 2007
    Assignee: Corning Incorporated
    Inventors: George Edward Berkey, Xin Chen, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan, Donnell Thaddeus Walton, Ji Wang, Luis Alberto Zenteno
  • Patent number: 7130514
    Abstract: An optical waveguide fiber having a high threshold for stimulated Brillouin scattering. According to some embodiments of the invention, the optical fiber comprises: (a) a rare earth doped core having a refractive index profile and a centerline, the core including at least two adjacent core regions including different amounts of updopants, such that the longitudinal acoustic field velocities within the two core regions differ by at least 0.2%; and (b) a cladding layer surrounding and directly adjacent the core. The said fiber has MFD of greater than 12 ?m and delta % difference between the peak core delta and the cladding of less than 0.3%.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: October 31, 2006
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ming-Jun Li, Donnell Thaddeus Walton, Luis Alberto Zenteno
  • Publication number: 20060222307
    Abstract: An optical system comprises an optical fiber with gain producing core with an index of refraction n1, surrounded by at least one cladding with an index of refraction n2, said cladding including at least one index reduced area with an index of refraction n2, such that n1>n2>n2, the core propagating signal at a spatial fundamental mode at a signal wavelength ?1 and at a power level sufficient to generate optical power at a wavelength ?2, where ?2>?1, and the optical fiber has at least one cut-off fundamental spatial mode wavelength ?C, and ?1<?C and ?2>?C.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 5, 2006
    Inventors: Donnell Walton, Ji Wang, Luis Alberto Zenteno, Ming-Jun Li