Patents by Inventor Luis Andre Neves Paiva Fernandes

Luis Andre Neves Paiva Fernandes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240077678
    Abstract: A variable optical attenuator (VOA) may include an input collimator with an input fiber connected on one side and an output collimator with an output fiber connected on one side, where the collimators are on a same surface of a VOA enclosure. A retroreflector may receive a light beam from the input collimator and reflect the light beam to the output collimator. The VOA may include an attenuation element positioned between the input collimator and the retroreflector and/or another attenuation element positioned between the retroreflector and the output collimator to provide variable attenuation to the light beam. The attenuation elements may be moved to set an attenuation level by one or more adjustment elements such as a miniature motor. The attenuation element may include a gradient index (GRIN) element, a polarizer, a neutral density filter, or a wavelength tunable filter.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 7, 2024
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Driss TOUAHRI, Joshua Benjamin Julius Philipson, Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes, Robert Matthew Adams
  • Publication number: 20240019721
    Abstract: A polarization scrambler using a retardance element (RE) is disclosed. The polarization scrambler may include an optical fiber input to transmit an optical signal, and a beam expander to receive and expand the optical signal to create an expanded optical signal. The polarization scrambler may include a retardance element (RE) to cause a polarization scrambling effect on the expanded optical signal and to create a scrambled expanded optical signal. The polarization scrambler may include a beam reducer to receive and reduce the scrambled expanded optical signal to create a scrambled optical signal. The polarization scrambler may include an optical fiber output to receive scrambled optical signal. The optical fiber output may transmit the scrambled optical signal to one or more downstream optical components.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Joshua PHILIPSON, Christopher Russell WAGNER, Luis Andre Neves Paiva FERNANDES
  • Patent number: 11821791
    Abstract: A monochromator apparatus for an optical spectrum analyzer may include a diffraction grating, a rotatable oblique prism reflector element with a non-right-angle apex angle, and a mirror. An input optical beam received from an input component may be diffracted by the grating element and reflected by a reflector element, where the reflector element may include a rotatable oblique prism with an apex angle that is different from a right angle. A mirror may reflect the reflected diffracted optical beam back to the reflector element and the grating element. An output optical beam from the grating element may be provided via an output element to a detection element for high resolution optical measurement. The oblique prism reflector element may reduce or eliminate a Littrow ghost effect or secondary ghost effects caused by the grating element.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 21, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Driss Touahri, Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes, Joshua Benjamin Julius Philipson
  • Patent number: 11754862
    Abstract: A polarization scrambler using a retardance element (RE) is disclosed. The polarization scrambler may include an optical fiber input to transmit an optical signal, and a beam expander to receive and expand the optical signal to create an expanded optical signal. The polarization scrambler may include a retardance element (RE) to cause a polarization scrambling effect on the expanded optical signal and to create a scrambled expanded optical signal. The polarization scrambler may include a beam reducer to receive and reduce the scrambled expanded optical signal to create a scrambled optical signal. The polarization to scrambler may include an optical fiber output to receive scrambled optical signal. The optical fiber output may transmit the scrambled optical signal to one or more downstream optical components.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: September 12, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Joshua Philipson, Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes
  • Publication number: 20230105391
    Abstract: A polarization scrambler using a retardance element (RE) is disclosed. The polarization scrambler may include an optical fiber input to transmit an optical signal, and a beam expander to receive and expand the optical signal to create an expanded optical signal. The polarization scrambler may include a retardance element (RE) to cause a polarization scrambling effect on the expanded optical signal and to create a scrambled expanded optical signal. The polarization scrambler may include a beam reducer to receive and reduce the scrambled expanded optical signal to create a scrambled optical signal. The polarization to scrambler may include an optical fiber output to receive scrambled optical signal. The optical fiber output may transmit the scrambled optical signal to one or more downstream optical components.
    Type: Application
    Filed: November 2, 2022
    Publication date: April 6, 2023
    Applicant: Viavi Solutions Inc.
    Inventors: Joshua PHILIPSON, Christopher Russell WAGNER, Luis Andre Neves Paiva FERNANDES
  • Patent number: 11614360
    Abstract: A system for providing optical measurements and detection in optical spectrum analyzers (OSAs) with high dynamic range and high speed is disclosed. The system may include a slit to allow inward passage of an optical beam. The system may also include an optical portion to receive the optical beam. In some examples, the optical portion may include at least one optical splitter to split the optical beam into at least two optical paths. The system may also include an electrical portion to receive the optical beams split into the at least two optical paths. In some examples, the electrical portion may include at least one photodetector to receive each of the split optical beam. The electrical portion may also include at least one amplifier communicatively coupled to each of the at least one photodetector to amplify the split optical beam.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: March 28, 2023
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes, Joshua Benjamin Julius Philipson
  • Patent number: 11526035
    Abstract: A polarization scrambler using a retardance element (RE) is disclosed. The polarization scrambler may include an optical fiber input to transmit an optical signal, and a beam expander to receive and expand the optical signal to create an expanded optical signal. The polarization scrambler may include a retardance element (RE) to cause a polarization scrambling effect on the expanded optical signal and to create a scrambled expanded optical signal. The polarization scrambler may include a beam reducer to receive and reduce the scrambled expanded optical signal to create a scrambled optical signal. The polarization scrambler may include an optical fiber output to receive scrambled optical signal. The optical fiber output may transmit the scrambled optical signal to one or more downstream optical components.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 13, 2022
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Joshua Philipson, Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes
  • Publication number: 20220390322
    Abstract: According to examples, a system for measuring polarization dependent loss (PDL) for a device-under-test (DUT) may include a tunable laser, a polarization element and a power meter. The tunable laser may emit an optical signal to sweep across an optical band at a constant rate. The polarization element may scramble polarizations states of the optical signal emitted from the tunable laser. The power meter may take power measurements associated with the optical signal emitted from the tunable laser, wherein the power measurements from the power meter are used to determine a maximum insertion loss (IL) and a minimum insertion loss (IL) associated with the device-under-test (DUT). An average insertion loss (IL) and a polarization dependent loss (PDL) for the device-under-test (DUT) may be calculated based on the maximum insertion loss (IL) and the minimum insertion loss (IL) associated with the device-under-test (DUT).
    Type: Application
    Filed: June 7, 2021
    Publication date: December 8, 2022
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Luis Andre Neves Paiva FERNANDES, Robert Matthew ADAMS, Christopher Russell WAGNER, Joshua Benjamin Julius PHILIPSON, Eugene CHAN
  • Publication number: 20220049989
    Abstract: A system for providing optical measurements and detection in optical spectrum analyzers (OSAs) with high dynamic range and high speed is disclosed. The system may include a slit to allow inward passage of an optical beam. The system may also include an optical portion to receive the optical beam. In some examples, the optical portion may include at least one optical splitter to split the optical beam into at least two optical paths. The system may also include an electrical portion to receive the optical beams split into the at least two optical paths. In some examples, the electrical portion may include at least one photodetector to receive each of the split optical beam. The electrical portion may also include at least one amplifier communicatively coupled to each of the at least one photodetector to amplify the split optical beam.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 17, 2022
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes, Joshua Benjamin Julius Philipson
  • Patent number: 11125617
    Abstract: A system for providing optical measurements and detection in optical spectrum analyzers (OSAs) with high dynamic range and high speed is disclosed. The system may include a slit to allow inward passage of an optical beam. The system may also include an optical portion to receive the optical beam. In some examples, the optical portion may include at least one optical splitter to split the optical beam into at least two optical paths. The system may also include an electrical portion to receive the optical beams split into the at least two optical paths. In some examples, the electrical portion may include at least one photodetector to receive each of the split optical beam. The electrical portion may also include at least one amplifier communicatively coupled to each of the at least one photodetector to amplify the split optical beam.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: September 21, 2021
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes, Joshua Benjamin Julius Philipson
  • Publication number: 20200387015
    Abstract: A polarization scrambler using a retardance element (RE) is disclosed. The polarization scrambler may include an optical fiber input to transmit an optical signal, and a beam expander to receive and expand the optical signal to create an expanded optical signal. The polarization scrambler may include a retardance element (RE) to cause a polarization scrambling effect on the expanded optical signal and to create a scrambled expanded optical signal. The polarization scrambler may include a beam reducer to receive and reduce the scrambled expanded optical signal to create a scrambled optical signal. The polarization scrambler may include an optical fiber output to receive scrambled optical signal. The optical fiber output may transmit the scrambled optical signal to one or more downstream optical components.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: Joshua PHILIPSON, Christopher Russell Wagner, Luis Andre Neves Paiva Fernandes