Patents by Inventor Luis E. Zapata

Luis E. Zapata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10095083
    Abstract: A method of generating THz radiation includes the steps of generating optical input radiation with an input radiation source device (10), irradiating a first conversion crystal device (30) with the optical input radiation, wherein the first conversion crystal device (30) is arranged in a single pass configuration, and generating the THz radiation having a THz frequency in the first conversion crystal device (30) in response to the optical input radiation by an optical-to-THz-conversion process, wherein a multi-line frequency spectrum is provided by the optical input radiation in the first conversion crystal device (30), and the optical-to-THz-conversion process includes cascaded difference frequency generation using the multi-line frequency spectrum. Furthermore, a THz source apparatus being configured for generating THz radiation and applications thereof are described.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: October 9, 2018
    Assignees: Deutsches Elektronen-Synchrotron DESY, Massachusetts Institute of Technology
    Inventors: Franz X. Kaertner, Damian N. Barre, Michael Hemmer, Giovanni Cirmi, Oliver D. Muecke, Giulio Maria Rossi, Arya Fallahi, Nicholas H. Matlis, Luis E. Zapata, Koustuban Ravi, Fabian Reichert
  • Publication number: 20170269455
    Abstract: A method of generating THz radiation includes the steps of generating optical input radiation with an input radiation source device (10), irradiating a first conversion crystal device (30) with the optical input radiation, wherein the first conversion crystal device (30) is arranged in a single pass configuration, and generating the THz radiation having a THz frequency in the first conversion crystal device (30) in response to the optical input radiation by an optical-to-THz-conversion process, wherein a multi-line frequency spectrum is provided by the optical input radiation in the first conversion crystal device (30), and the optical-to-THz-conversion process includes cascaded difference frequency generation using the multi-line frequency spectrum. Furthermore, a THz source apparatus being configured for generating THz radiation and applications thereof are described.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: Franz X. KAERTNER, Damian N. BARRE, Michael HEMMER, Giovanni CIRMI, Oliver D. MUECKE, Giulio Maria ROSSI, Arya FALLAHI, Nicholas H. MATLIS, Luis E. ZAPATA, Koustuban RAVI, Fabian REICHERT
  • Publication number: 20150285749
    Abstract: The structure of materials can be characterized (e.g., via CD-SAXS) by generating a burst of electron bunches in a pulse train and accelerating the electron bunches to relativistic energies. Meanwhile, an optical cavity is filled with a laser pulse; and the electron bunches collide with the laser pulse in the optical cavity, permitting a single laser pulse to interact with the electron bunch train to generate x-rays via inverse Compton scattering. The generated x-rays are then directed to a sample, and the sample is imaged by measuring the scattering of the x-rays from the sample.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 8, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: David Eugene Moncton, William Sproull Graves, Franz Xaver Kaertner, Hua Lin, Emilio Alessandro Nanni, Luis E. Zapata, Boris Khaykovich
  • Patent number: 9065241
    Abstract: An inventive composite optical gain medium capable includes a thin-disk gain layer bonded to an index-matched cap. The gain medium's surface is shaped like a paraboloid frustum or other truncated surface of revolution. The gain medium may be cryogenically cooled and optically pumped to provide optical gain for a pulsed laser beam. Photons emitted spontaneously in the gain layer reflect off or refract through the curved surface and out of the gain medium, reducing amplified spontaneous emission (ASE). This reduces limits on stored energy and gain imposed by ASE, enabling higher average powers (e.g., 100-10,000 Watts). Operating at cryogenic temperatures reduces thermal distortion caused by thermo-mechanical surface deformations and thermo-optic index variations in the gain medium. This facilitates the use of the gain medium in an image-relayed, multi-pass architecture for smoothed extraction and further increases in peak pulse energy (e.g., to 1-100 Joules).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 23, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Luis E. Zapata, Franz X. Kaertner, Eduardo Granados Mateo, Kyung-Han Hong
  • Publication number: 20130301117
    Abstract: An inventive composite optical gain medium capable includes a thin-disk gain layer bonded to an index-matched cap. The gain medium's surface is shaped like a paraboloid frustum or other truncated surface of revolution. The gain medium may be cryogenically cooled and optically pumped to provide optical gain for a pulsed laser beam. Photons emitted spontaneously in the gain layer reflect off or refract through the curved surface and out of the gain medium, reducing amplified spontaneous emission (ASE). This reduces limits on stored energy and gain imposed by ASE, enabling higher average powers (e.g., 100-10,000 Watts). Operating at cryogenic temperatures reduces thermal distortion caused by thermo-mechanical surface deformations and thermo-optic index variations in the gain medium. This facilitates the use of the gain medium in an image-relayed, multi-pass architecture for smoothed extraction and further increases in peak pulse energy (e.g., to 1-100 Joules).
    Type: Application
    Filed: March 14, 2013
    Publication date: November 14, 2013
    Inventors: Luis E. Zapata, Franz X. Kaertner
  • Patent number: 6834070
    Abstract: The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: December 21, 2004
    Assignee: The Regents of the University of California
    Inventor: Luis E. Zapata
  • Patent number: 6763050
    Abstract: A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 13, 2004
    Assignee: The Regents of the University of California
    Inventors: Luis E. Zapata, Raymond J. Beach, Eric C. Honea, Stephen A. Payne
  • Publication number: 20030161376
    Abstract: The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.
    Type: Application
    Filed: January 26, 2001
    Publication date: August 28, 2003
    Applicant: The Regents of the University of California
    Inventor: Luis E. Zapata
  • Publication number: 20020039377
    Abstract: A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.
    Type: Application
    Filed: January 26, 2001
    Publication date: April 4, 2002
    Applicant: The Regents of the University of California
    Inventors: Luis E. Zapata, Raymond J. Beach, Eric C. Honea, Stephen A. Payne
  • Patent number: 6252203
    Abstract: A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: June 26, 2001
    Assignee: The Regents of the University of California
    Inventors: Luis E. Zapata, Lloyd Hackel
  • Patent number: 5978407
    Abstract: A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: November 2, 1999
    Assignee: United States Enrichment Corporation
    Inventors: Jim J. Chang, Isaac L. Bass, Luis E. Zapata
  • Patent number: 5971565
    Abstract: A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: October 26, 1999
    Assignee: Regents of the University of California
    Inventors: Luis E. Zapata, Lloyd Hackel
  • Patent number: 5335237
    Abstract: A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: August 2, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Luis E. Zapata
  • Patent number: 5285310
    Abstract: A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer.
    Type: Grant
    Filed: January 21, 1992
    Date of Patent: February 8, 1994
    Assignee: Regents of the University of California
    Inventors: John L. Miller, Lloyd A. Hackel, Clifford B. Dane, Luis E. Zapata