Patents by Inventor Luis Santos

Luis Santos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230404384
    Abstract: A video laryngoscope for managing the airway in an individual in need thereof, comprising: a substantially curved handle. The handle comprises an internal cavity which is open along its entire length on one of its sides and has a cap on the opposite side. Said cavity houses a blade of the video laryngoscope when it is folded over the handle, which is rotatably mounted to rotate 180° about the axis of symmetry of the handle by means of a pivot axis of a movable blade support that houses an automatic locking mechanism. The movable blade is connected to the support by means of a longitudinal slide and runs on the slide activating a lock of an extension-retraction mechanism. A monitor chassis is mounted at the proximal end of the handle that includes a TFT-LCD screen covered by a protective plate, the screen being connected to a printed circuit board comprising a plurality of image-adjustment controls and an on/off switch, connected respectively to four push-buttons sticking out through the monitor chassis.
    Type: Application
    Filed: October 29, 2021
    Publication date: December 21, 2023
    Inventors: Luis Santos SPITALE, Guillermo Leonardo SIEBENHAAR
  • Publication number: 20230332131
    Abstract: The invention in various aspects provides for magnetic enrichment and/or expansion of antigen-specific T cells, allowing for identification and characterization of antigen-specific T cells and their T cell receptors (TCRs) for therapeutic and/or diagnostic purposes, as well as providing for production of antigen-specific engineered T cells for therapy. Incubation of paramagnetic nano-aAPCs in the presence of a magnetic field, either during enrichment and/or expansion steps, activates T cells through magnetic clustering of paramagnetic particles on the T cell surface.
    Type: Application
    Filed: February 21, 2023
    Publication date: October 19, 2023
    Inventors: Mathias OELKE, Jose Luis SANTOS, Sojung KIM, Jonathan SCHNECK, Alyssa KOSMIDES
  • Publication number: 20230248463
    Abstract: A protective barrier for face isolation in orotracheal maneuvers, comprising: an essentially rectangular sheet made of a clear plastic material comprising, on its back side, a plurality of first circumferentially arranged fastening means and second cross-sectionally arranged fastening means substantially dividing the sheet in half thereby defining two sections; and at least four sleeves made of a clear plastic material affixed to the sheet in one of the sections defined by the second cross-sectionally arranged fastening means defining an outwardly open arc, wherein said sleeves comprise third fastening means arranged internally and circumferentially on the distal ends of each of the sleeves.
    Type: Application
    Filed: July 7, 2021
    Publication date: August 10, 2023
    Inventors: Luis Santos SPITALE, Guillermo Leonardo SIEBENHAAR
  • Publication number: 20230190667
    Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 22, 2023
    Inventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
  • Publication number: 20230190665
    Abstract: The present invention belongs to the technical field of nanomedicine, and relates to a method for preparing a therapeutic protein-loaded nanoparticle, as well as a therapeutic protein-loaded nanoparticle, a suspension and a pharmaceutical composition comprising the nanoparticle, and a pharmaceutical preparation comprising the nanoparticle, the suspension or the pharmaceutical composition. The present invention further relates to a use of the nanoparticle in manufacture of a pharmaceutical composition, wherein the pharmaceutical composition is useful in prevention or treatment of a disease that can be prevented or treated by the therapeutic protein comprised in the nanoparticle.
    Type: Application
    Filed: January 19, 2017
    Publication date: June 22, 2023
    Inventors: Hai-Quan Mao, Jose Luis Santos, Zhiyu He, Huahua Huang, Lixin Liu, Kam W. Leong, Yongming Chen
  • Patent number: 11395805
    Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 26, 2022
    Assignee: The Johns Hopkins University
    Inventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
  • Patent number: 11283745
    Abstract: The present invention allows multiple different messages to different recipients through a single email. The system allows a sender to designate multiple recipients in the subject areas and the composition areas of the email application and send different messages to each recipient.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: March 22, 2022
    Inventors: Kailyn Cage, Luis Santos
  • Patent number: 11235071
    Abstract: Compositions comprising a polymeric micellar nanoparticle composition comprising a block or graft copolymer comprising at least one polycationic polymer and at least one polyethylene glycol (PEG) polymer having an average molecular weight less than 1 kDa, and at least one nucleic acid, wherein the graft or block copolymer and at least one nucleic acid are complexed and condensed into a shaped micellar nanoparticle that is stable in biological media are disclosed. The presently disclosed subject matter also provides a method for preparing the presently disclosed polymeric micellar nanoparticle compositions, a method for targeting at least one metastatic cancer cell in a subject, and a method for treating a disease or condition using the presently disclosed polymeric micellar nanoparticle compositions.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: February 1, 2022
    Assignee: The Johns Hopkins University
    Inventors: Hai-Quan Mao, John Michael Williford, Maani Archang, Il Minn, Yong Ren, Jose Luis Santos, Martin G. Pomper
  • Publication number: 20210110891
    Abstract: A method may include obtaining, by a computer processor, first data from a first entity regarding a polymerization process. The method may further include obtaining, by the computer processor, second data from a second entity regarding a production process. The method may further include generating, by the computer processor, a decision tree model using the first data, the second data, and an artificial intelligence algorithm.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 15, 2021
    Applicant: Braskem S.A.
    Inventors: Rodrigo Fabian Galvez, Gilson Pereira Fontes Junior, Francisco Carlos Ruiz, Ricardo Luis Santos Brasil
  • Patent number: 10918603
    Abstract: An improved spray drying method for production of amorphous solid dispersions with enhanced bulk density and material attributes comprising the introduction of at least one additional stream in at least one of multiple locations in a spray dryer without interfering with the spray region.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: February 16, 2021
    Assignee: Hovione Holding Limited
    Inventors: José Luis Santos, Filipe Gaspar, Marcio Temtem
  • Publication number: 20210040004
    Abstract: Liquid organic nutrient for agricultural use which comprises calcium carbonate, of which the particles have an average size of less than 1 micron, at least one humic substance to provide nutrients N-P-K (1-0-19), hydroxiphyllosilicate of aluminum and magnesium (HPAM) with a high gelling capacity, and water which is used as a diluent. Method of producing the liquid organic nutrient for agricultural use, which comprises mixing at least one humic substance with water, adding calcium carbonate, grinding the mixture in a vertical pearl mill using a batch system for a sufficient time for the particles to have an average size of less than 1 micron, adjusting the percentage of solids to the initial value indicated in the nutrient formula, adding a quantity of hydroxiphyllosilicate of aluminum and magnesium, and recovering the particles of less than 1 micron from the product.
    Type: Application
    Filed: February 14, 2018
    Publication date: February 11, 2021
    Inventors: Francisco ZAMORA REA, Jose Luis SANTOS SALAZAR
  • Publication number: 20200291381
    Abstract: The invention in various aspects provides for magnetic enrichment and/or expansion of antigen-specific T cells, allowing for identification and characterization of antigen-specific T cells and their T cell receptors (TCRs) for therapeutic and/or diagnostic purposes, as well as providing for production of antigen-specific engineered T cells for therapy. Incubation of paramagnetic nano-aAPCs in the presence of a magnetic field, either during enrichment and/or expansion steps, activates T cells through magnetic clustering of paramagnetic particles on the T cell surface.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 17, 2020
    Inventors: Mathias OELKE, Jose Luis SANTOS, Sojung KIM, Jonathan SCHNECK, Alyssa KOSMIDES
  • Publication number: 20200101023
    Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 2, 2020
    Inventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
  • Publication number: 20200016082
    Abstract: An improved spray drying method for production of amorphous solid dispersions with enhanced bulk density and material attributes comprising the introduction of at least one additional stream in at least one of multiple locations in a spray dryer without interfering with the spray region.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: José Luis SANTOS, Filipe GASPAR, Marcio TEMTEM
  • Patent number: 10463621
    Abstract: An improved spray drying method for production of amorphous solid dispersions with enhanced bulk density and material attributes comprising the introduction of at least one additional stream in at least one of multiple locations in a spray dryer without interfering with the spray region.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: November 5, 2019
    Assignee: Hovione Holding Limited
    Inventors: José Luis Santos, Filipe Gaspar, Marcio Temtem
  • Patent number: 10441549
    Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 15, 2019
    Assignee: The Johns Hopkins University
    Inventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
  • Patent number: 10369537
    Abstract: This present invention provides a spray dryer for use in preparing particles for inhalation, the spray dryer comprising a multi-nozzle apparatus comprising multiple single nozzles suitable for use in preparing inhalation powders and with a drying gas flow rate greater than about 80 kg/h. Also provided is a method for scaling-up a spray drying process for preparing particles for inhalation from a smaller scale spray dryer to a larger scale spray dryer, relative in size to each other, the method comprising the use in the larger scale spray dryer of a multi-nozzle apparatus comprising single nozzles suitable for use in preparing inhalation powders, wherein the number of nozzles in the larger spray dryer is determined by the ratio of the drying gas flow rate of the larger scale spray dryer to the drying gas flow rate of the smaller scale spray dryer.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: August 6, 2019
    Assignee: Hovione Holding Limited
    Inventors: José Luis Santos, Luis Olival, Maria Palha, Filipa Maia, Filipe Neves
  • Publication number: 20180361362
    Abstract: The present invention relates to the synthesis and application of gold catalysts supported in mixed CuO/ZnO/Al2O3 oxides prepared on the basis of their corresponding solids with a hydrotalcite structure as catalysts in the water-gas shift reaction, for use in fuel processors coupled to fuel cells.
    Type: Application
    Filed: October 14, 2015
    Publication date: December 20, 2018
    Applicants: UNIVERSIDAD DE SEVILLA, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS
    Inventors: José Antonio ODRIOZOLA GORDÓN, Ivanova SVETLANA LYUBOMIROVA, José Luis SANTOS MUÑOZ, Miguel Ángel CENTENO GALLERO, Tomás RAMÍREZ REINA, Tatyana TODOROVA TABAKOVA, Vasko DANAILOV IDAKIEV, Ivan IVANOV BOGOEV
  • Publication number: 20180177892
    Abstract: Compositions comprising a polymeric micellar nanoparticle composition comprising a block or graft copolymer comprising at least one polycationic polymer and at least one polyethylene glycol (PEG) polymer having an average molecular weight less than 1 kDa, and at least one nucleic acid, wherein the graft or block copolymer and at least one nucleic acid are complexed and condensed into a shaped micellar nanoparticle that is stable in biological media are disclosed. The presently disclosed subject matter also provides a method for preparing the presently disclosed polymeric micellar nanoparticle compositions, a method for targeting at least one metastatic cancer cell in a subject, and a method for treating a disease or condition using the presently disclosed polymeric micellar nanoparticle compositions.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 28, 2018
    Inventors: HAI-QUAN MAO, JOHN MICHAEL WILLIFORD, MAANI ARCHANG, IL MINN, YONG REN, JOSE LUIS SANTOS, MARTIN G. POMPER
  • Patent number: 9937470
    Abstract: The present invention provides a method for producing particles having a reduced particle size distribution, which method comprises the steps of: a) providing a composition comprising particles; b) subjecting the particles in said composition to a size reduction step or to a size growth step; c) feeding said particles to a first membrane separation system to separate said particles according to size; d) recycling those particles that do not meet the size criteria back to step a); e) optionally, collecting in a collection tank the permeate of the first membrane separation system. Particles obtainable according to the method of the invention and characterized by having a near monodisperse particle size distribution are also provided. The particles are preferably characterized by having a particle size distribution with a span of less than 2.0. The invention also provides pharmaceutical compositions comprising particles according to the invention, and also apparatus for carrying out the method of the invention.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 10, 2018
    Assignee: Hovione International Ltd
    Inventors: Jośe Luis Santos, Filipe Gaspar