Patents by Inventor Lujun Pan

Lujun Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210261418
    Abstract: The present invention provides a method for synthesizing high-purity carbon nanocoils based on a composite catalyst formed by multiple small-sized catalyst particles, and belongs to the technical field of material preparation. In the present invention, Fe—Sn—O nanoparticles with sizes of less than 100 nm prepared by chemical or physical methods are used as catalysts, and stacked and made into contact in a simple manner, and then carbon nanocoils are efficiently synthesized from the prepared catalysts by a thermal chemical vapor deposition method. The method provided by the present invention has simple process and low cost. In addition, the preset invention discloses a novel carbon nanocoil growth mechanism, which makes the prepared catalyst for carbon nanocoil growth more efficient and easier for industrialized mass production.
    Type: Application
    Filed: June 12, 2020
    Publication date: August 26, 2021
    Inventors: Lujun PAN, Yongpeng ZHAO
  • Patent number: 8505478
    Abstract: Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.-A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 13, 2013
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Osamu Suekane, Toshikazu Nosaka, Yoshikazu Nakayama, Lujun Pan, Takeshi Nagasaka, Toru Sakai, Hiroyuki Tsuchiya, Toshiki Goto, Xu Li
  • Publication number: 20100303675
    Abstract: Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity. A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously.
    Type: Application
    Filed: August 4, 2010
    Publication date: December 2, 2010
    Inventors: Osamu Suekane, Toshikazu Nosaka, Yoshikazu Nakayama, Lujun Pan, Takeshi Nagasaka, Toru Sakai, Hiroyuki Tsuchiya, Toshiki Goto, Xu Li
  • Patent number: 7829494
    Abstract: A method for synthesizing carbon nanocoils with high efficiency, by determining the structure of carbon nuclei that have been attached to the ends of carbon nanocoils and thus specifying a true catalyst for synthesizing carbon nanocoils is implemented. The catalyst for synthesizing carbon nanocoils according to the present invention is a carbide catalyst that contains at least elements (a transition metal element, In, C) or (a transition metal element, Sn, C), and in particular, it is preferable for the transition metal element to be Fe, Co or Ni. In addition to this carbide catalyst, a metal catalyst of (Fe, Al, Sn) and (Fe, Cr, Sn) are effective. From among these, catalysts such as Fe3InC0.5, Fe3InC0.5Snw and Fe3SnC are particularly preferable. The wire diameter and the coil diameter can be controlled by using a catalyst where any of these catalysts is carried by a porous carrier.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: November 9, 2010
    Assignees: Japan Science and Technology Agency, Public University Corporation, Osaka Prefecture University, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd.
    Inventors: Yoshikazu Nakayama, Lujun Pan, Toshikazu Nosaka, Osamu Suekane, Nobuharu Okazaki, Takeshi Nagasaka, Toshiki Goto, Hiroyuki Tsuchiya, Takashi Okawa, Keisuke Shiono
  • Patent number: 7790228
    Abstract: Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity. A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: September 7, 2010
    Assignees: Japan Science and Technology Agency, Osaka Prefecture, Taiyo Nippon Sanso Corporation, Nissin Electric Co., Ltd., Otsuka Chemical Co., Ltd.
    Inventors: Osamu Suekane, Toshikazu Nosaka, Yoshikazu Nakayama, Lujun Pan, Takeshi Nagasaka, Toru Sakai, Hiroyuki Tsuchiya, Toshiki Goto, Xu Li
  • Publication number: 20070098622
    Abstract: A method for synthesizing carbon nanocoils with high efficiency, by determining the structure of carbon nuclei that have been attached to the ends of carbon nanocoils and thus specifying a true catalyst for synthesizing carbon nanocoils is implemented. The catalyst for synthesizing carbon nanocoils according to the present invention is a carbide catalyst that contains at least elements (a transition metal element, In, C) or (a transition metal element, Sn, C), and in particular, it is preferable for the transition metal element to be Fe, Co or Ni. In addition to this carbide catalyst, a metal catalyst of (Fe, Al, Sn) and (Fe, Cr, Sn) are effective. From among these, catalysts such as Fe3InC0.5, Fe3InC0.5Snw and Fe3SnC are particularly preferable. The wire diameter and the coil diameter can be controlled by using a catalyst where any of these catalysts is carried by a porous carrier.
    Type: Application
    Filed: May 28, 2004
    Publication date: May 3, 2007
    Applicants: Japan Science and Technology Agency, Public University Corporation, Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd.
    Inventors: Yoshikazu Nakayama, Lujun Pan, Toshikazu Nosaka, Osamu Suekane, Nobuharu Okazaki, Takeshi Nagasaka, Toshiki Goto, Hiroyuki Tsuchiya, Takashi Okawa, Keisuke Shiono
  • Publication number: 20070037370
    Abstract: Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity. A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously.
    Type: Application
    Filed: March 23, 2004
    Publication date: February 15, 2007
    Inventors: Osamu Suekane, Toshikazu Nosaka, Yoshikazu Nakayama, Lujun Pan, Takeshi Nagasaka, Toru Sakai, Hiroyuki Tsuchiya, Toshiki Goto, Xu Li
  • Publication number: 20030198058
    Abstract: A vehicle lamp of which lamp chamber is formed by a lamp body and an outer lens, and a light source and an inner lens are provided inside the lamp chamber, with the inner lens functioning to selectively transmit the complementary color to the color of the outer lens and a desired color and being disposed between the light source and the outer lens. A half mirror is provided on the inner lens so as to face the outer lens.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 23, 2003
    Inventors: Yoshikazu Nakayama, Lujun Pan, Akio Harada