Patents by Inventor Lukas Bentfeld

Lukas Bentfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936273
    Abstract: A stator assembly for a planar electrical motor includes coil conductors arranged in a stator layer, elongated in a first direction and arranged side by side in a second direction perpendicular to the first direction. The coil conductors are connected to form a three-phase system, with a first forward conductor and first return conductor of the first phase connected in series to the first forward conductor, a second forward conductor and second return conductor of the second phase connected in series with the second forward conductor, and a third forward conductor and third return conductor of the third phase connected in series with the third forward conductor. The three-phase system has first and second opposite sides. The first forward conductor and the first return conductor are electroconductively connected in series by first and second horizontal connecting conductors arranged in the stator layer on the second and first side, respectively.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 19, 2024
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Uwe Prüssmeier, Lukas Bentfeld
  • Publication number: 20230100474
    Abstract: A method for operating a planar drive system is specified. The planar drive system comprises a stator, a plurality of rotors and a main controller. The stator comprises a plurality of energizable stator conductors. Energizing of stator conductors of the stator can be controlled via the main controller. Each rotor comprises a magnet device having at least one rotor magnet. A magnetic interaction can be produced between energized stator conductors of the stator and the magnet devices of the rotors in order to drive the rotors. At least one individual rotor identifier is assigned to each rotor. An identification of the rotors is carried out by providing position information of the rotors and rotor identifiers of the rotors and linking the provided position information of the rotors to the provided rotor identifiers of the rotors via the main controller.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 30, 2023
    Inventor: Lukas Bentfeld
  • Publication number: 20230072018
    Abstract: A planar drive system comprises a stator and a rotor. The stator comprises a plurality of energizable stator conductors. The rotor comprises a magnet device having at least one rotor magnet. A magnetic interaction can be produced between energized stator conductors of the stator and the magnet device in order to drive the rotor. The stator is configured to carry out energization of the stator conductors so that an alternating magnetic field can be generated via the energized stator conductors. The rotor comprises at least one rotor coil in which an alternating voltage can be induced due to the alternating magnetic field. The planar drive system is configured to transmit data from the rotor to the stator, and the rotor is configured to temporarily load the at least one rotor coil to temporarily cause increased current consumption of the energized stator conductors of the stator.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Inventors: Lukas Bentfeld, Rolf Brinkmann, Patrick Jebramcik, Tim Kaulmann
  • Publication number: 20230071070
    Abstract: A planar drive system comprises a stator and a rotor. The stator comprises a plurality of energizable stator conductors. The rotor comprises a magnet device having at least one rotor magnet. A magnetic interaction can be produced between energized stator conductors of the stator and the magnet device to drive the rotor. The stator is configured to carry out energization of the stator conductors so that an alternating magnetic field can be generated via the energized stator conductors. The rotor comprises at least one rotor coil in which an alternating voltage can be induced due to the alternating magnetic field. The planar drive system is configured to transmit data from the stator to the rotor, and the stator is configured to temporarily influence the energization of the stator conductors in order to temporarily cause a change with respect to the alternating voltage induced in the at least one rotor coil.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Inventors: Lukas Bentfeld, Rolf Brinkmann, Patrick Jebramcik, Tim Kaulmann
  • Publication number: 20230055324
    Abstract: A method for controlling a planar drive system includes identifying a preferred stator module direction with a preferred magnetic field or sensor direction, and identifying a preferred mover direction with a respective other of the preferred magnetic field or sensor direction; setting a magnetic orientation field with a magnet device; recording at least a measurement value of the magnetic orientation field with a magnetic field sensor device; determining an alignment of the preferred mover direction relative to the preferred stator module direction based on the measurement value of the component of the magnetic orientation field parallel to the preferred sensor direction; and determining a first orientation of the mover on the stator module, on the basis of the alignment of the preferred mover direction relative to the preferred stator module direction. The application also relates to a planar drive system.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 23, 2023
    Inventors: Lukas Bentfeld, Johannes Beckhoff
  • Patent number: 11552524
    Abstract: A stator module for driving a rotor of an electrical planar-drive system comprises a power module, a stator assembly arranged on a top surface of the power module, and a connector. The power module is embodied to provide drive currents for driving the rotor. The stator assembly comprises coil conductors electrically connected to the power module via the connector for charging with the drive currents. The power module and the stator assembly each have a plate-shaped embodiment. The power module is mechanically fastened to the stator assembly by the connector. The stator assembly comprises a contact structure with contact holes arranged side by side, and the power module comprises a connecting arrangement with further contact holes arranged side by side. The connector comprises contact pins arranged side by side to engage in the further contact holes of the connecting arrangement, and in the contact holes of the contact structure.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: January 10, 2023
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Pruessmeier
  • Publication number: 20230006517
    Abstract: A method for controlling a planar drive system includes determining values of magnetic stator fields for different energizing currents and spatial regions in a two-dimensional array of magnetic field sensors, generating at least one magnetic stator field by applying energizing currents to stator conductors to electrically control a rotor, determining measured values of a total magnetic field via the magnetic field sensors for a plurality of the spatial regions to determine a position of the rotor, compensating contributions of the magnetic stator fields to the measured values of the total magnetic field determined by the magnetic field sensors, generating measured values of the magnetic field determined by the respective magnetic field sensors for the respective space regions, and determining a position of the rotor based on the generated measured values of the magnetic fields. The planar drive system includes at least a controller, a stator module, and a rotor.
    Type: Application
    Filed: September 6, 2022
    Publication date: January 5, 2023
    Inventors: Lukas Bentfeld, Klaus Neumann, Keir Maguire, Dominik Sensen, Tim Kaulmann
  • Publication number: 20230006530
    Abstract: A method for controlling a planar drive system includes generating a position allocating function, in an allocation generating step; measuring a plurality of measuring values of the magnetic rotor field by magnetic field sensors for a position of the rotor relative to the stator module, in a magnetic rotor field determining step; applying the position determination function to the plurality of measuring values of the magnetic rotor field of the plurality of magnetic field sensors, in a measuring value analysis step; and determining the position of the rotor relative to the stator module on the basis of the measurements of the magnetic rotor field measured by the plurality of magnetic field sensors and based on the allocations of the position allocating function, in a position determining step. The application further relates to such a planar drive system.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Inventors: Klaus Neumann, Lukas Bentfeld, Keir Maguire, Tim Kaulmann, Benjamin Jurke
  • Publication number: 20220393555
    Abstract: A planar drive system comprises a stator and a rotor. The stator comprises a plurality of stator conductors. The rotor comprises a magnet device comprising at least one rotor magnet. The stator is configured to energize the stator conductors. A magnetic interaction can be produced between energized stator conductors of the stator and the magnet device of the rotor in order to drive the rotor. The stator is configured to carry out the energizing of the stator conductors by a current control based on a pulse-width modulation. Due to the current control, a ripple current in energized stator conductors of the stator and thereby an alternating magnetic field can be generated. The rotor comprises at least one rotor coil in which an alternating voltage can be induced due to the alternating magnetic field.
    Type: Application
    Filed: August 12, 2022
    Publication date: December 8, 2022
    Inventors: Lukas Bentfeld, Rolf Brinkmann, Patrick Jebramcik, Tim Kaulmann
  • Patent number: 11522433
    Abstract: A stator module for two-dimensionally driving a rotor having first and second magnet units includes a stator assembly with first and second stator segments configured for interacting with drive magnets of the first and second magnet units. The individual stator segments can each be energized independently from the remaining stator segments. The stator assembly includes first, second, third and fourth stator sectors. The first stator segments of the individual stator sectors each extend in a second direction over all second stator segments of the relevant stator sector, arranged side by side, and the second stator segments of the individual stator sectors each extend in a first direction over all first stator segments of the relevant stator sector arranged side by side. Extensions of the stator sectors in the first and second directions are respectively smaller than extensions of a magnet arrangement including the first and second magnet units.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: December 6, 2022
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Pruessmeier
  • Patent number: 11489428
    Abstract: A stator module for electromagnetically driving a rotor of a planar drive system comprises a connection module to provide drive energy. A power module has a current-generating unit to generate a drive current, which drives the rotor, from the drive energy. A stator unit has a coil conductor, to which the drive current can be applied, for generating a magnetic field which drives the rotor. A sensor module comprises a position-detecting unit to detect a position of the rotor over the sensor unit. The sensor module is arranged in a module housing. The stator unit and power module are arranged on a top side of the module housing and the connection module is arranged on a bottom side. The current-generating unit and the connection module are connected via a drive energy line. The drive energy line passes through the module housing in a manner electrically insulated from the sensor module.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 1, 2022
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Pruessmeier, Joerg Neufeld
  • Patent number: 11437893
    Abstract: A planar-drive system includes a rotor and stator module with a housing, a stator assembly for driving the rotor, and a sensor module for detecting the rotor position. The sensor module has a 2D arrangement of magnetic-field sensors arranged on a carrier in first and second periodic grids, extending in first and second directions. Adjacent magnetic-field sensors are arranged at first and second distances in the first and second directions. The grids are shifted by a vector having first and second components smaller than the respective first and a second distances. The rotor has first and second magnet units, each with an arrangement of magnets with first and second periodic lengths aligned in the first and second directions. The first and second components of the vector, and a difference between the first and second distances and the respective components, are each smaller than the respective first and second periodic lengths.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: September 6, 2022
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Pruessmeier
  • Patent number: 11437902
    Abstract: A stator module for two-dimensionally driving a rotor having first and second magnet units comprises a stator assembly including first and second stator segments for interacting with drive magnets of the first and second magnet units. The individual stator segments may each be energized independently from the remaining stator segments. The stator assembly comprises first, second, third and fourth stator sectors. The first stator segments of the individual stator sectors each extend in a second direction over all second stator segments of the relevant stator sector arranged side by side, and the second stator segments of the individual stator sectors each extend in a first direction over all first stator segments of the relevant stator sector arranged side by side. Extensions of the stator sectors in the first and second directions are respectively smaller than extensions of a magnet arrangement comprising the magnet units.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: September 6, 2022
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Pruessmeier
  • Patent number: 11309763
    Abstract: A stator assembly for driving a rotor of an electrical planar motor includes a first arrangement of longitudinal stator layers and a second arrangement of oblique stator layers. The longitudinal stator layers comprise first coil conductors and the oblique stator layers comprise second coil conductors. The second coil conductors interact with second drive magnets to drive the rotor in a first direction, and the first coil conductors interact with first drive magnets to drive the rotor in a second direction, different from the first direction. The longitudinal and oblique stator layers are arranged on top of one another in a third direction, perpendicular to the first and second directions, where the first arrangement of longitudinal stator layers and the second arrangement of oblique stator layers have a shared central plane, each being symmetrically arranged with regard to the shared central plane, in the third direction.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: April 19, 2022
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Prüssmeier
  • Patent number: 11296571
    Abstract: A stator assembly for driving a rotor of a planar electrical motor includes longitudinal stator layers with first coil conductors and inclined stator layers with second coil conductors. The first coil conductors extend in an elongated manner in a first direction, and the second coil conductors extend in an elongated manner in a second direction, different from the first direction. The longitudinal and inclined stator layers are arranged on top of one another in a third direction, oriented perpendicularly to the first and second direction. An uppermost and lowermost stator layer of the stator assembly are each formed as a longitudinal stator layer with first coil conductors. The longitudinal stator layers are arranged in the third direction at most on one side next to an inclined stator layer, and the inclined stator layers are arranged in the third direction at most on one side next to a longitudinal stator layer.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: April 5, 2022
    Assignee: Beckhoff Automation GmbH
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Prüssmeier
  • Patent number: 11038410
    Abstract: A stator module is disclosed, and a planar drive system with a stator module. The stator module has a lower face opposite an upper face, a stator unit situated on the upper face, and a cooling unit. The stator unit has a coil to which current can be supplied to generate a magnetic field to drive a mover, positionable on the upper face of the stator module. The cooling unit has a cover thermally connected to a lower face of the stator unit and to the bottom of the housing. The bottom of the housing has a first fastening section on the lower face of the stator module, thermally connectable to a heat sink. The cover is designed to conduct heat out of the stator unit to the bottom of the housing, which is designed to conduct the heat at least partially to the first fastening section.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 15, 2021
    Assignee: Beckhoff Automation Gmbh
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Jörg Neufeld
  • Publication number: 20210099068
    Abstract: A stator assembly for a planar electrical motor includes coil conductors arranged in a stator layer, elongated in a first direction and arranged side by side in a second direction perpendicular to the first direction. The coil conductors are connected to form a three-phase system, with a first forward conductor a nnd first return conductor of the first phase connected in series to the first forward conductor, a second forward conductor and second return conductor of the second phase connected in series with the second forward conductor, and a third forward conductor and third return conductor of the third phase connected in series with the third forward conductor. The three-phase system has first and second opposite sides. The first forward conductor and the first return conductor are electroconductively connected in series by first and second horizontal connecting conductors arranged in the stator layer on the second and first side, respectively.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Rolf Brinkmann, Uwe Prüssmeier, Lukas Bentfeld
  • Publication number: 20210091621
    Abstract: A stator assembly for driving a rotor of a planar electrical motor includes longitudinal stator layers with first coil conductors and inclined stator layers with second coil conductors. The first coil conductors extend in an elongated manner in a first direction, and the second coil conductors extend in an elongated manner in a second direction, different from the first direction. The longitudinal and inclined stator layers are arranged on top of one another in a third direction, oriented perpendicularly to the first and second direction. An uppermost and lowermost stator layer of the stator assembly are each formed as a longitudinal stator layer with first coil conductors. The longitudinal stator layers are arranged in the third direction at most on one side next to an inclined stator layer, and the inclined stator layers are arranged in the third direction at most on one side next to a longitudinal stator layer.
    Type: Application
    Filed: December 4, 2020
    Publication date: March 25, 2021
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Prüssmeier
  • Publication number: 20210091622
    Abstract: A stator assembly for driving a rotor of an electrical planar motor includes a first arrangement of longitudinal stator layers and a second arrangement of oblique stator layers. The longitudinal stator layers comprise first coil conductors and the oblique stator layers comprise second coil conductors. The second coil conductors interact with second drive magnets to drive the rotor in a first direction, and the first coil conductors interact with first drive magnets to drive the rotor in a second direction, different from the first direction. The longitudinal and oblique stator layers are arranged on top of one another in a third direction, perpendicular to the first and second directions, where the first arrangement of longitudinal stator layers and the second arrangement of oblique stator layers have a shared central plane, each being symmetrically arranged with regard to the shared central plane, in the third direction.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Uwe Prüssmeier
  • Publication number: 20200321846
    Abstract: A stator module is disclosed, and a planar drive system with a stator module. The stator module has a lower face opposite an upper face, a stator unit situated on the upper face, and a cooling unit. The stator unit has a coil to which current can be supplied to generate a magnetic field to drive a mover, positionable on the upper face of the stator module. The cooling unit has a cover thermally connected to a lower face of the stator unit and to the bottom of the housing. The bottom of the housing has a first fastening section on the lower face of the stator module, thermally connectable to a heat sink. The cover is designed to conduct heat out of the stator unit to the bottom of the housing, which is designed to conduct the heat at least partially to the first fastening section.
    Type: Application
    Filed: June 2, 2020
    Publication date: October 8, 2020
    Inventors: Rolf Brinkmann, Lukas Bentfeld, Jörg Neufeld