Patents by Inventor Lukas Klejnowski

Lukas Klejnowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11333504
    Abstract: A method is described for updating a digital map for vehicle navigation. The method includes a step of determining an adjustment signal for adjusting a detection range of an environment sensor of a vehicle to a section of an environment of the vehicle that corresponds to an area of the digital map to be updated, using an item of information about the area to be updated, and the method including a step of supplying area data for updating the digital map, the area data representing an image of the section of the environment detected by the environment sensor.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: May 17, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10872477
    Abstract: A method for uploading data of a motor vehicle, including the steps: acquiring surrounding-area data of the motor vehicle with the aid of a sensor device; generating a locational reference for the acquired surrounding-area data; evaluating the acquired surrounding-area data by comparing the acquired surrounding-area data to known surrounding-area data of a data storage unit of a server device; and uploading the acquired surrounding-area data to the server device (40) as a function of the evaluation.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: December 22, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20200132475
    Abstract: A method is described for updating a digital map for vehicle navigation. The method includes a step of determining an adjustment signal for adjusting a detection range of an environment sensor of a vehicle to a section of an environment of the vehicle that corresponds to an area of the digital map to be updated, using an item of information about the area to be updated, and the method including a step of supplying area data for updating the digital map, the area data representing an image of the section of the environment detected by the environment sensor.
    Type: Application
    Filed: March 14, 2018
    Publication date: April 30, 2020
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10591304
    Abstract: A method of an automated motor vehicle for optimized communication from a server of localization reference data for a defined location includes a sensor of the motor vehicle capturing driving environment data, linking the captured driving environment data to location information, based on the linking, localizing the motor vehicle at an achieved localization accuracy, identifying a setpoint localization accuracy at which an operation of the motor vehicle is to be performed, signaling to the server the achieved localization accuracy, and transmitting to the server a request for the localization reference data at the setpoint localization accuracy based on the signaled achieved localization accuracy.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10591913
    Abstract: A method for transmitting, receiving and processing data values, including detecting first data values, which represent at least one first transition from an automated operation of at least one first automated vehicle to a manual operation of the at least one first automated vehicle. The method also includes transmitting the first data values, receiving the first data values and a step of processing the first data values, and a transmission device and a receiving device for carrying out the method for transmitting, receiving and processing data values.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 17, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Patent number: 10464573
    Abstract: A method for providing driving-environment data for a driver-assist system on board a motor vehicle includes determining a route to be traveled; providing driving-environment data along the determined route, driving-environment data along an initial section of a road deviating from the route additionally being provided; determining that the motor vehicle is traveling on the road; determining a new route that includes the traveled road; and providing driving-environment data along the new route.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: November 5, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180357839
    Abstract: A method for uploading data of a motor vehicle, including the steps: acquiring surrounding-area data of the motor vehicle with the aid of a sensor device; generating a locational reference for the acquired surrounding-area data; evaluating the acquired surrounding-area data by comparing the acquired surrounding-area data to known surrounding-area data of a data storage unit of a server device; and uploading the acquired surrounding-area data to the server device (40) as a function of the evaluation.
    Type: Application
    Filed: May 13, 2016
    Publication date: December 13, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180245928
    Abstract: A method of an automated motor vehicle for optimized communication from a server of localization reference data for a defined location includes a sensor of the motor vehicle capturing driving environment data, linking the captured driving environment data to location information, based on the linking, localizing the motor vehicle at an achieved localization accuracy, identifying a setpoint localization accuracy at which an operation of the motor vehicle is to be performed, signaling to the server the achieved localization accuracy, and transmitting to the server a request for the localization reference data at the setpoint localization accuracy based on the signaled achieved localization accuracy.
    Type: Application
    Filed: June 17, 2016
    Publication date: August 30, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20180050703
    Abstract: A method for providing driving-environment data for a driver-assist system on board a motor vehicle includes determining a route to be traveled; providing driving-environment data along the determined route, driving-environment data along an initial section of a road deviating from the route additionally being provided; determining that the motor vehicle is traveling on the road; determining a new route that includes the traveled road; and providing driving-environment data along the new route.
    Type: Application
    Filed: February 5, 2016
    Publication date: February 22, 2018
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20170168483
    Abstract: A method and device for operating at least one first automated vehicle including receiving data values, which represent at least one transition from an automated operation of at least one second automated vehicle to a manual operation of the at least one second automated vehicle, and operating the at least one first automated vehicle, the operation taking place as a function of the received data values.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 15, 2017
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20170168484
    Abstract: A method for transmitting, receiving and processing data values, including detecting first data values, which represent at least one first transition from an automated operation of at least one first automated vehicle to a manual operation of the at least one first automated vehicle. The method also includes transmitting the first data values, receiving the first data values and a step of processing the first data values, and a transmission device and a receiving device for carrying out the method for transmitting, receiving and processing data values.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 15, 2017
    Inventors: Moritz Michael Knorr, Alexander Geraldy, Christian Skupin, Daniel Zaum, Emre Cakar, Hanno Homann, Holger Mielenz, Isabella Hinterleitner, Jochen Marx, Lukas Klejnowski, Markus Langenberg, Michael Pagel
  • Publication number: 20170067764
    Abstract: A method and a device for detecting at least one sensor malfunction of at least one first sensor of at least one first vehicle, at least one first signal from the at least one first sensor of the at least one first vehicle being ascertained and this at least one first signal being compared according to predefined comparison criteria to at least one comparison variable, at least one further second signal from at least one second sensor of at least one further second vehicle being ascertained as this at least one comparison variable and the at least one sensor malfunction being detected in the at least one first vehicle as a function of the comparison.
    Type: Application
    Filed: August 11, 2016
    Publication date: March 9, 2017
    Inventors: Christian Skupin, Markus Langenberg, Daniel Zaum, Hanno Homann, Moritz Michael Knorr, Lukas Klejnowski, Alexander Geraldy, Michael Pagel, Emre Cakar, Jochen Marx, Isabella Hinterleitner, Holger Mielenz