Patents by Inventor Lukas Krainer

Lukas Krainer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240020955
    Abstract: In one aspect, the invention concerns an imaging method for generating a digitally stained image (51?) of a biological tissue probe (50) from a physical image (50?) of an unstained tissue biological tissue probe (50) in which a physical image (50?) of a biological tissue probe (50) is obtained by simultaneous multi-modal microscopy (53). In another aspect, the invention pertains to a training method for training an artificial intelligence system to be used in such a method. Moreover, the invention pertains to a system for generating a digitally stained image (51?) of a biological tissue probe (50) and/or for training an artificial intelligence system. The system comprises a processing unit for performing at least one of said methods. Furthermore, the invention relates to a non-transitory storage medium containing instructions that, when executed by a computer, causes the computer to perform said methods.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 18, 2024
    Applicant: Prospective Instruments GmbH
    Inventors: Klaus FRICK, Philipp Gerard TRÉMUEL, Lukas KRAINER
  • Publication number: 20230273421
    Abstract: Disclosed are multimodal microscopic systems (1). In a first aspect, the system (1) comprises at least a first base unit (2) comprising at least one electrical and/or optical base component (14, 15, 16, 17, 18, 19), at least one scan unit (4) comprising at least one scan component (20, 21, 22) and at least one detection unit (5) comprising at least one detection component (7, 8, 9, 10, 11). The at least one base component (14, 15, 16, 17, 18, 19), the at least one scan component (20, 21, 22) and the at least one detection component (7, 8, 9, 10, 11) are operatively coupled to each other such that at least one base components (14, 15, 16, 17, 18, 19) and/or at least one scan components (20, 21, 22) and/or at least one detection components (7, 8, 9, 10, 11) is jointly useable for more than one modality.
    Type: Application
    Filed: July 12, 2021
    Publication date: August 31, 2023
    Inventor: Lukas KRAINER
  • Patent number: 7106764
    Abstract: A passively mode-locked solid-state laser is designed to emit a continuous-wave train (51, 52) of electromagnetic-radiation pulses, the fundamental repetition rate of the emitted pulses exceeding 1 GHz, without Q-switching instabilities. The laser includes an optical resonator (3.1), a solid-state laser gain element (2) placed inside the optical resonator (3.1), a device (1) for exciting said laser gain element (2) to emit electromagnetic radiation having the effective wavelength, and a device (4) for passive mode locking including a saturable absorber. The laser gain element (2) is a laser material with a stimulated emission cross section exceeding 0.8×10?18 cm2 at the effective wavelength, and is made of Nd:vanadate. The saturable absorber (4) is preferably a semiconductor saturable absorber mirror (SESAM) device. Even higher repetition rates are achieved by operating the laser in the soliton regime. For use in fiber-optical telecommunication, the laser wavelength is preferably shifted to 1.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: September 12, 2006
    Assignee: Gigatera AG
    Inventors: Kurt J. Weingarten, Lukas Krainer, Ursula Keller, Rüdiger Paschotta
  • Patent number: 6778565
    Abstract: An optically pumped laser with an Er:Yb: doped solid state gain element is disclosed, which is passively mode-locked by means of a saturable absorber mirror. The laser is designed to operate at a fundamental repetition rate exceeding 1 GHz and preferably at an effective wavelength between 1525 nm and 1570 nm. Compared to state of the art solid state pulsed lasers, the threshold for Q-switched-mode-locked operation is substantially improved. Thus, according to one embodiment, the laser achieves a repetition rate beyond 40 GHz. The laser preferably comprises means for wavelength tuning and repetition rate locking.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: August 17, 2004
    Assignee: Gigatera AG
    Inventors: Gabriel J. Spuehler, Lukas Krainer, Kurt Weingarten, Rudiger Paschotta, Ursula Keller
  • Publication number: 20030118060
    Abstract: An optically pumped laser with an Er:Yb: doped solid state gain element is disclosed, which is passively mode-locked by means of a saturable absorber mirror. The laser is designed to operate at a fundamental repetition rate exceeding 1 GHz and preferably at an effective wavelength between 1525 nm and 1570 nm. Compared to state of the art solid state pulsed lasers, the threshold for Q-switched-mode-locked operation is substantially improved. Thus, according to one embodiment, the laser achieves a repetition rate beyond 40 GHz. The laser preferably comprises means for wavelength tuning and repetition rate locking.
    Type: Application
    Filed: November 5, 2002
    Publication date: June 26, 2003
    Applicant: GIGATERA AG
    Inventors: Gabriel J. Spuehler, Lukas Krainer, Kurt Weingarten, Rudiger Paschotta, Ursula Keller
  • Publication number: 20030058904
    Abstract: An optically pumped laser with an Er:Yb: doped solid state gain element is disclosed, which is passively mode-locked by means of a semiconductor saturable absorber mirror. The laser is designed to operate at a fundamental repetition rate exceeding 1 GHz and preferably at an effective wavelength between 1525 nm and 1570 nm. Compared to state of the art solid state pulsed lasers, the threshold for Q-switched-mode-locked operation is substantially improved. Thus, according to one embodiment, the laser achieves a repetition rate beyond 40 GHz. The laser preferably comprises means for wavelength tuning and repetition rate locking.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 27, 2003
    Applicant: GigaTera AG
    Inventors: Lukas Krainer, Gabriel J. Spuehler, Rudiger Paschotta, Kurt Weingarten, Ursula Keller
  • Patent number: 6538298
    Abstract: A “low field enhancement” (LFR) semiconductor saturable absorber device design in which the structure is changed such that it has a resonant condition. Consequently, the field strength is substantially higher in the spacer layer, resulting in a smaller saturation fluence and in a higher modulation depth. However, the field in the spacer layer is still lower than the free space field or only moderately enhanced compared to the field in the free space. According to one embodiment, the absorber device is a Semiconductor Saturable Absorber Mirror (SESAM) device. In contrast with SESAMs according to the state of the art, a structure including the absorber and being placed on top of a Bragg reflector is provided, which essentially fulfills a resonance condition whereby a standing electromagnetic wave is present in the structure. In other words, the design is such that the field intensity reaches a local maximum in the vicinity of the device surface.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 25, 2003
    Assignee: Gigatera AG
    Inventors: Kurt Weingarten, Gabriel J. Spuehler, Ursula Keller, Lukas Krainer