Patents by Inventor Lukasz REDLARSKI

Lukasz REDLARSKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11587246
    Abstract: A metrology system is provided including a projected pattern for points-from-focus type processes. The metrology system includes an objective lens portion, a light source, a pattern projection portion and a camera. Different lenses (e.g., objective lenses) having different magnifications and cutoff frequencies may be utilized in the system. The pattern projection portion includes a pattern component with a pattern. At least a majority of the area of the pattern includes pattern portions that are not recurring at regular intervals across the pattern (e.g., as corresponding to a diverse spectrum of spatial frequencies that result in a relatively flat power spectrum over a desired range and with which different lenses with different cutoff frequencies may be utilized). The pattern is projected on a workpiece surface (e.g., for producing contrast) and an image stack is acquired, from which focus curve data is determined that indicates 3 dimensional positions of workpiece surface points.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 21, 2023
    Assignee: Mitutoyo Corporation
    Inventors: Shannon Roy Campbell, Lukasz Redlarski
  • Patent number: 11530914
    Abstract: A shape measuring apparatus applies, to a light beam, a periodic pattern having periodicity in a direction perpendicular to an optical axis and displaceable in the direction perpendicular to the optical axis, relatively displaces a focal point of an objective lens in a direction parallel to the optical axis, and calculates, based on amplitude of intensity of the light beam detected by a photodetector, face shape data on the object to be measured. Then, a top surface measuring step of acquiring face shape data on a top surface of the object to be measured, and a bottom surface measuring step of acquiring face shape data on a bottom surface of the object to be measured by transmitting through the top surface of the object to be measured and aligning the focal point of the objective lens on the bottom surface of the object to be measured are performed.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: December 20, 2022
    Assignee: MITUTOYO CORPORATION
    Inventors: Lukasz Redlarski, Hideyuki Arai
  • Patent number: 11493330
    Abstract: A method for measuring a height map of a test surface having a varying reflectivity using a multi-sensor apparatus including a pre-scan sensor and a height measuring sensor is disclosed. The multi-sensor apparatus further comprises one or more light sources configured to illuminate the test surface and a spatial light modulator. The spatial light modulator is placed in a light path between the one or more light sources and a measuring location of the multi-sensor apparatus and is configured to modulate light emitted from at least one of the light sources. The method comprises performing a measurement for determining an illumination intensity map of the test surface and a measurement for performing a height map of the test surface.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 8, 2022
    Assignee: MITUTOYO CORPORATION
    Inventors: Hendrik Ketelaars, Adriaan Tiemen Zuiderweg, Lukasz Redlarski, John Quaedackers
  • Publication number: 20220138976
    Abstract: A metrology system is provided including a projected pattern for points-from-focus type processes. The metrology system includes an objective lens portion, a light source, a pattern projection portion and a camera. Different lenses (e.g., objective lenses) having different magnifications and cutoff frequencies may be utilized in the system. The pattern projection portion includes a pattern component with a pattern. At least a majority of the area of the pattern includes pattern portions that are not recurring at regular intervals across the pattern (e.g., as corresponding to a diverse spectrum of spatial frequencies that result in a relatively flat power spectrum over a desired range and with which different lenses with different cutoff frequencies may be utilized). The pattern is projected on a workpiece surface (e.g., for producing contrast) and an image stack is acquired, from which focus curve data is determined that indicates 3 dimensional positions of workpiece surface points.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: Shannon Roy Campbell, Lukasz Redlarski
  • Publication number: 20220034650
    Abstract: A shape measuring apparatus applies, to a light beam, a periodic pattern having periodicity in a direction perpendicular to an optical axis and displaceable in the direction perpendicular to the optical axis, relatively displaces a focal point of an objective lens in a direction parallel to the optical axis, and calculates, based on amplitude of intensity of the light beam detected by a photodetector, face shape data on the object to be measured. Then, a top surface measuring step of acquiring face shape data on a top surface of the object to be measured, and a bottom surface measuring step of acquiring face shape data on a bottom surface of the object to be measured by transmitting through the top surface of the object to be measured and aligning the focal point of the objective lens on the bottom surface of the object to be measured are performed.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 3, 2022
    Applicant: MITUTOYO CORPORATION
    Inventors: Lukasz REDLARSKI, Hideyuki ARAI
  • Publication number: 20210180943
    Abstract: A method for measuring a height map of a test surface having a varying reflectivity using a multi-sensor apparatus including a pre-scan sensor and a height measuring sensor is disclosed. The multi-sensor apparatus further comprises one or more light sources configured to illuminate the test surface and a spatial light modulator. The spatial light modulator is placed in a light path between the one or more light sources and a measuring location of the multi-sensor apparatus and is configured to modulate light emitted from at least one of the light sources. The method comprises performing a measurement for determining an illumination intensity map of the test surface and a measurement for performing a height map of the test surface.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 17, 2021
    Applicant: MITUTOYO CORPORATION
    Inventors: Hendrik KETELAARS, Adriaan Tiemen ZUIDERWEG, Lukasz REDLARSKI, John QUAEDACKERS
  • Patent number: 9568304
    Abstract: In a method and apparatus for determining the height of a plurality of spatial positions on a surface of a specimen, a light beam is projected on the surface. The surface is scanned along an optical axis in different scanning positions. The light reflected by the surface is detected in scanning positions with a spatial pattern having corresponding spatial pattern positions. From the detected light for each spatial position of the surface, an envelope curve of intensity values corresponding to scanning positions is determined. A maximum of the envelope curve and its corresponding scanning position being representative of the height of the spatial position of the surface is selected. The spatial pattern is moved in a sequence of 2n steps (n>2) in a first and a second spatial direction over a distance of ΒΌ and 1/n pattern wavelength, respectively.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 14, 2017
    Assignee: MITUTOYO CORPORATION
    Inventors: Han Haitjema, Frans de Nooij, Lukasz Redlarski
  • Publication number: 20150219441
    Abstract: In a method and apparatus for determining the height of a plurality of spatial positions on a surface of a specimen, a light beam is projected on the surface. The light beam has a sinusoidal spatial pattern in at least two directions perpendicular to an optical axis of the light beam, and which is moved to different spatial pattern positions. The surface is scanned along the optical axis in different scanning positions. A fixed relationship between a moving distance between subsequent spatial pattern positions, and a scanning distance between subsequent scanning positions exists. The light reflected by the surface is detected in scanning positions with the spatial pattern having corresponding spatial pattern positions. From the detected light for each spatial position of the surface, an envelope curve of intensity values corresponding to scanning positions is determined.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 6, 2015
    Applicant: MITUTOYO CORPORATION
    Inventors: Han HAITJEMA, Frans de NOOIJ, Lukasz REDLARSKI