Patents by Inventor Luke Bonecutter
Luke Bonecutter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12170220Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: GrantFiled: September 8, 2022Date of Patent: December 17, 2024Assignee: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Publication number: 20240170251Abstract: An ion implantation system including an ion source for generating an ion beam, an end station for holding a substrate to be implanted by the ion beam, and a linear accelerator disposed between the ion source and the end station and adapted to accelerate the ion beam, the linear accelerator including at least one acceleration stage including a resonator and a resonator coil disposed within a resonator chamber, wherein the resonator coil is a tubular body having a plurality of coaxial layers, including an inner layer, a middle layer, and an outer layer, wherein the outer layer is formed of a dielectric material.Type: ApplicationFiled: November 23, 2022Publication date: May 23, 2024Applicant: Applied Materials, Inc.Inventors: William Herron Park, JR., Charles T. Carlson, Luke Bonecutter
-
Patent number: 11948817Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.Type: GrantFiled: October 13, 2022Date of Patent: April 2, 2024Assignee: Applied Materials, Inc.Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
-
Publication number: 20230032854Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.Type: ApplicationFiled: October 13, 2022Publication date: February 2, 2023Applicant: Applied Materials, Inc.Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
-
Publication number: 20230005783Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: ApplicationFiled: September 8, 2022Publication date: January 5, 2023Applicant: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Patent number: 11476135Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.Type: GrantFiled: July 7, 2020Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
-
Patent number: 11443973Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: GrantFiled: July 7, 2020Date of Patent: September 13, 2022Assignee: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Patent number: 11355367Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.Type: GrantFiled: July 7, 2020Date of Patent: June 7, 2022Assignee: Applied Materials, Inc.Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Patent number: 11326256Abstract: Embodiments described herein relate to apparatus and techniques for mechanical isolation and thermal insulation in a process chamber. In one embodiment, an insulating layer is disposed between a dome assembly and a gas ring. The insulating layer is configured to maintain a temperature of the dome assembly and prevent thermal energy transfer from the dome assembly to the gas ring. The insulating layer provides mechanical isolation of the dome assembly from the gas ring. The insulating layer also provides thermal insulation between the dome assembly and the gas ring. The insulating layer may be fabricated from a polyimide containing material, which substantially reduces an occurrence of deformation of the insulating layer.Type: GrantFiled: November 21, 2019Date of Patent: May 10, 2022Assignee: Applied Materials, Inc.Inventors: Luke Bonecutter, Yunzhe Yang, Rupankar Choudhury, Abhijit Kangude
-
Publication number: 20220093426Abstract: Exemplary substrate processing systems may include a base. The systems may include a chamber body having a transfer region housing that defines a transfer region. The transfer region housing may include a first portion and a second portion. The systems may include a lid assembly positioned atop the chamber body. The lid assembly may include a lid and a lid stack. The systems may include one or more lift mechanisms that elevate the first portion of the transfer region housing and at least a portion of the lid assembly relative to the base. The first portion and the second portion may mate with one another when the transfer region housing is in an operational configuration. The first portion and the second portion may be separated when the first portion of the transfer region housing is elevated.Type: ApplicationFiled: September 21, 2020Publication date: March 24, 2022Applicant: Applied Materials, Inc.Inventors: Samuel W. Shannon, Luke Bonecutter, Viren Kalsekar, Chahal Neema
-
Patent number: 11227746Abstract: Embodiments described herein provide a backside gas delivery assembly that prevents inert gas from forming parasitic plasma. The backside gas delivery assembly includes a first gas channel disposed in a stem of a substrate support assembly. The substrate support assembly includes a substrate support having a second gas channel extending from the first gas channel. The backside gas delivery assembly further includes a porous plug disposed within the first gas channel positioned at an interface of the stem and the substrate support, a gas source connected to the first gas channel configured to deliver an inert gas to a backside surface of a substrate disposed on an upper surface of the substrate support, and a gas tube in the first gas channel extending to the porous plug positioned at the interface of the stem and the substrate support.Type: GrantFiled: February 20, 2019Date of Patent: January 18, 2022Assignee: Applied Materials, Inc.Inventors: Luke Bonecutter, Abhijit Kangude
-
Patent number: 10984990Abstract: A plasma processing apparatus is provided including a radio frequency power source; a direct current power source; a chamber enclosing a process volume; and a substrate support assembly disposed in the process volume. The substrate support assembly includes a substrate support having a substrate supporting surface; an electrode disposed in the substrate support; and an interconnect assembly coupling the radio frequency power source and the direct current power source with the electrode.Type: GrantFiled: April 17, 2018Date of Patent: April 20, 2021Assignee: Applied Materials, Inc.Inventors: Ramesh Bokka, Jason M. Schaller, Jay D. Pinson, II, Luke Bonecutter
-
Publication number: 20210013067Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.Type: ApplicationFiled: July 7, 2020Publication date: January 14, 2021Applicant: Applied Materials, Inc.Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
-
Publication number: 20210013068Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.Type: ApplicationFiled: July 7, 2020Publication date: January 14, 2021Applicant: Applied Materials, Inc.Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Publication number: 20210013084Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: ApplicationFiled: July 7, 2020Publication date: January 14, 2021Applicant: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Patent number: 9145271Abstract: A system and method for the handling of workpieces in a workpiece processing system is disclosed. The system utilizes three conveyor belts, where one may be a loading belt, feeding unprocessed workpieces from its associated workpiece carrier to a processing system. A second conveyor belt may be an unloading belt, receiving processed workpieces from the processing system and filling its associated workpiece carrier. The third conveyor belt may be exchanging its workpiece carrier during this time, so that it is available to start operating as the loading belt once all of the workpieces have been removed from the workpiece carrier associated with the first conveyor belt.Type: GrantFiled: September 5, 2013Date of Patent: September 29, 2015Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Robert Brent Vopat, Malcolm N. Daniel, Luke Bonecutter, Jason M. Schaller, Charles T. Carlson, William T. Weaver
-
Publication number: 20140169402Abstract: An ion implant apparatus configured to measure the temperature or monitor the degradation of components in the apparatus is provided. The ion implant apparatus may include a platen configured to move in a first direction, a mask frame to hold one or more masks disposed on the platen, a first optical sensor configured to project an optical beam to a second optical sensor, and a measurement bar disposed on the mask frame, the measurement bar raised above the surface of the mask frame to interrupt the optical beam when the platen moves in the first direction.Type: ApplicationFiled: December 10, 2013Publication date: June 19, 2014Applicant: Varian Semiconductor Equipment Associates, Inc.Inventors: Aaron P. Webb, Benjamin B. Riordon, Charles T. Carlson, Christopher N. Grant, Luke Bonecutter, William T. Weaver
-
Publication number: 20140076688Abstract: A system and method for the handling of workpieces in a workpiece processing system is disclosed. The system utilizes three conveyor belts, where one may be a loading belt, feeding unprocessed workpieces from its associated workpiece carrier to a processing system. A second conveyor belt may be an unloading belt, receiving processed workpieces from the processing system and filling its associated workpiece carrier. The third conveyor belt may be exchanging its workpiece carrier during this time, so that it is available to start operating as the loading belt once all of the workpieces have been removed from the workpiece carrier associated with the first conveyor belt.Type: ApplicationFiled: September 5, 2013Publication date: March 20, 2014Inventors: Robert Brent Vopat, Malcolm N. Daniel, Luke Bonecutter, Jason M. Schaller, Charles T. Carlson, William T. Weaver
-
Publication number: 20060250788Abstract: An adjustable downlight fixture includes an adjustable mounting for a light source. The adjustable mounting for the light source may be rotated about a substantially vertical axis and tilted about a substantially horizontal axis from underneath the adjustable downlight fixture without having to remove the adjustable downlight fixture from its mounting within the ceiling.Type: ApplicationFiled: April 12, 2006Publication date: November 9, 2006Inventors: Michael Hodge, Luke Bonecutter