Patents by Inventor Luke C Ingram

Luke C Ingram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240034084
    Abstract: Disclosed herein is a livery printing system and a method of generating a control path. The system includes a training system having a processor and a memory with code configured to cause the processor to receive a 3D digital model associated with an object; generate simulated control paths, based on the 3D digital model, for actuators of a printing device with printheads, determine a reward value for each one of the simulated control paths based on a simulated physical value, a simulated surface coverage value, or a simulated printing speed value. A value of one simulated control path variable of any of the simulated control paths is different than the value of the simulated control path variable of another simulated control path. One of the simulated control paths is selected based on a comparison between the reward values determined for the simulated control paths.
    Type: Application
    Filed: August 1, 2022
    Publication date: February 1, 2024
    Inventors: Luke C. Ingram, Anthony W. Baker, Steven A. Dorris
  • Patent number: 11407166
    Abstract: Methods of performing a rotational and translational calibrations of a print control system of an inkjet printer system having an inkjet printhead assembly with one or more inkjet printheads are disclosed. Rotational calibration is performed by printing a first rotational calibration pattern from a first standoff distance and a second rotational calibration pattern from a second standoff distance on a first calibration object. The print control system is calibrated until the rotational calibration patterns are within a direction difference tolerance of each other. Translational calibration is performed by printing a first translation calibration pattern on a second calibration object, rotating the inkjet printhead assembly 180°, and printing a second translational calibration pattern on the second calibration object. The print control system is calibrated until the translational calibration patterns are within a direction difference tolerance of each other.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 9, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Zachary R. Smith, Anthony W. Baker, Luke C. Ingram
  • Publication number: 20220193903
    Abstract: One embodiment comprises a method of operating a robotic system. The method comprises defining a Tool Center Point (TCP) for an end effector of the robotic system, providing a primary control plan that defines a tool path for the end effector, where the tool path has a plurality of pre-defined TCP positions. The method further comprises providing a secondary control plan that defines operation of the end effector at the plurality of pre-defined TCP positions, and determining a deviation between a pre-defined TCP position of the end effector and an actual TCP position of the end effector during implementation of the primary control plan by the robotic system. The method further comprises modifying the secondary control plan for the end effector based on the deviation during the implementation of the primary control plan by the robotic system.
    Type: Application
    Filed: October 20, 2021
    Publication date: June 23, 2022
    Inventors: Luke C Ingram, Anthony W Baker, Steven A Dorris
  • Patent number: 11107271
    Abstract: An apparatus includes a memory configured to store multiple sets of image data. Each of the sets corresponds to a respective portion of a surface of an object and a respective portion of a structured light pattern projected onto the surface. The apparatus includes a processor configured to perform structured light reconstruction of the sets, including matching a first group of image pixels that correspond to a projected pixel of the structured light pattern in a first set of image data with a second group of image pixels that correspond to the projected pixel in a second set of image data. The processor is configured to perform stereo reconstruction of the sets, including matching one or more features detected within the first group of image pixels with one or more features detected within the second group of image pixels, to generate three-dimensional point data of the surface.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: August 31, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Luke C. Ingram, Anthony W. Baker
  • Publication number: 20210134053
    Abstract: An apparatus includes a memory configured to store multiple sets of image data. Each of the sets corresponds to a respective portion of a surface of an object and a respective portion of a structured light pattern projected onto the surface. The apparatus includes a processor configured to perform structured light reconstruction of the sets, including matching a first group of image pixels that correspond to a projected pixel of the structured light pattern in a first set of image data with a second group of image pixels that correspond to the projected pixel in a second set of image data. The processor is configured to perform stereo reconstruction of the sets, including matching one or more features detected within the first group of image pixels with one or more features detected within the second group of image pixels, to generate three-dimensional point data of the surface.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 6, 2021
    Inventors: Luke C. Ingram, Anthony W. Baker
  • Publication number: 20210094221
    Abstract: Methods of performing a rotational and translational calibrations of a print control system of an inkjet printer system having an inkjet printhead assembly with one or more inkjet printheads are disclosed. Rotational calibration is performed by printing a first rotational calibration pattern from a first standoff distance and a second rotational calibration pattern from a second standoff distance on a first calibration object. The print control system is calibrated until the rotational calibration patterns are within a direction difference tolerance of each other. Translational calibration is performed by printing a first translation calibration pattern on a second calibration object, rotating the inkjet printhead assembly 180°, and printing a second translational calibration pattern on the second calibration object. The print control system is calibrated until the translational calibration patterns are within a direction difference tolerance of each other.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Applicant: The Boeing Company
    Inventors: Zachary R. Smith, Anthony W. Baker, Luke C. Ingram
  • Patent number: 10532561
    Abstract: A method of collecting a metrology data set of a contoured surface with a metrology system and executing an automatic control plan for printing on a contoured surface is disclosed. The method includes attaching a work piece to a work piece frame and scanning a contoured surface of the work piece to obtain a metrology data set, a three-dimensional point cloud model is generated based on the metrology data set. Additionally, the method includes defining a spatial reference model of the work piece frame, and defining a print path for a print head assembly of a surface treatment assembly. Furthermore, the method includes discretizing the contoured surface into a plurality of regions and the print path is further defined into at least one independent regional print path for each region of the plurality of regions. Moreover, a computer software simulation verifies a control plan for printing on the contoured surface.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 14, 2020
    Assignee: The Boeing Company
    Inventors: Luke C. Ingram, Anthony W. Baker, Zachary R. Smith
  • Patent number: 10377092
    Abstract: Systems and methods are provided for verifying the placement of tows by a robot. One embodiment includes a robot that includes an end effector that lays up tows, actuators that reposition the end effector, a memory storing a Numerical Control (NC) program, and a robot controller that directs the actuators to reposition the end effector based on the NC program, and instructs the end effector to lay up tows based on the NC program. The system also includes a sensor system comprising an imaging device that acquires images of the tows as the tows are laid-up, a measuring device that generates input as tows are laid-up by the end effector, and a sensor controller that receives images from the imaging device and the input from the measuring device, and updates stored data to correlate the images with instructions in the NC program, based on the input.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: August 13, 2019
    Assignee: The Boeing Company
    Inventors: Anthony W Baker, Steven A Dorris, Christopher P Bellavia, Hugh L Taylor, Luke C Ingram, Kenny P Bowers
  • Patent number: 10293601
    Abstract: A method of developing an automatic control plan for printing on a contoured surface is disclosed. The method includes scanning a contoured surface with a surface scanning device to produce a contoured data set, and creating a multi-dimensional model, with a computing device, of the contoured surface based on the contoured surface data set. Additionally, the method includes inputting a multi-dimensional model of a printing array and an image to be printed onto the contoured surface, into the computing device. The method further includes simulating, on the computing device, a plurality of movements performed by the printing array and a printing by the printing array to apply the image on the contoured surface. Additionally, the method includes, compiling, on the computing device, the automatic control plan which is programmed to execute the plurality of movements of the printing array to apply the image on the contoured surface.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: May 21, 2019
    Assignee: The Boeing Company
    Inventors: Anthony W. Baker, Luke C. Ingram, Kenneth P. Bowers, III, Zachary R. Smith, David J. Homolak
  • Publication number: 20190070799
    Abstract: Systems and methods are provided for verifying the placement of tows by a robot. One embodiment includes a robot that includes an end effector that lays up tows, actuators that reposition the end effector, a memory storing a Numerical Control (NC) program, and a robot controller that directs the actuators to reposition the end effector based on the NC program, and instructs the end effector to lay up tows based on the NC program. The system also includes a sensor system comprising an imaging device that acquires images of the tows as the tows are laid-up, a measuring device that generates input as tows are laid-up by the end effector, and a sensor controller that receives images from the imaging device and the input from the measuring device, and updates stored data to correlate the images with instructions in the NC program, based on the input.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 7, 2019
    Inventors: Anthony W. Baker, Steven A. Dorris, Christopher P. Bellavia, Hugh L. Taylor, Luke C. Ingram, Kenny P. Bowers
  • Publication number: 20190030886
    Abstract: A method of collecting a metrology data set of a contoured surface with a metrology system and executing an automatic control plan for printing on a contoured surface is disclosed. The method includes attaching a work piece to a work piece frame and scanning a contoured surface of the work piece to obtain a metrology data set, a three-dimensional point cloud model is generated based on the metrology data set. Additionally, the method includes defining a spatial reference model of the work piece frame, and defining a print path for a print head assembly of a surface treatment assembly. Furthermore, the method includes discretizing the contoured surface into a plurality of regions and the print path is further defined into at least one independent regional print path for each region of the plurality of regions. Moreover, a computer software simulation verifies a control plan for printing on the contoured surface.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Applicant: The Boeing Company
    Inventors: Luke C. Ingram, Anthony W. Baker, Zachary R. Smith
  • Publication number: 20190016121
    Abstract: A method of developing an automatic control plan for printing on a contoured surface is disclosed. The method includes scanning a contoured surface with a surface scanning device to produce a contoured data set, and creating a multi-dimensional model, with a computing device, of the contoured surface based on the contoured surface data set. Additionally, the method includes inputting a multi-dimensional model of a printing array and an image to be printed onto the contoured surface, into the computing device. The method further includes simulating, on the computing device, a plurality of movements performed by the printing array and a printing by the printing array to apply the image on the contoured surface. Additionally, the method includes, compiling, on the computing device, the automatic control plan which is programmed to execute the plurality of movements of the printing array to apply the image on the contoured surface.
    Type: Application
    Filed: July 11, 2017
    Publication date: January 17, 2019
    Applicant: The Boeing Company
    Inventors: Anthony W. Baker, Luke C. Ingram, Kenneth P. Bowers, III, Zachary R. Smith, David J. Homolak
  • Patent number: 10144183
    Abstract: Systems and methods are provided for verifying the placement of tows by a robot. One embodiment includes a robot that includes an end effector that lays up tows, actuators that reposition the end effector, a memory storing a Numerical Control (NC) program, and a robot controller that directs the actuators to reposition the end effector based on the NC program, and instructs the end effector to lay up tows based on the NC program. The system also includes a sensor system comprising an imaging device that acquires images of the tows as the tows are laid-up, a measuring device that generates input as tows are laid-up by the end effector, and a sensor controller that receives images from the imaging device and the input from the measuring device, and updates stored data to correlate the images with instructions in the NC program, based on the input.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 4, 2018
    Assignee: The Boeing Company
    Inventors: Anthony W Baker, Steven A Dorris, Christopher P Bellavia, Hugh L Taylor, Luke C Ingram, Kenny P Bowers
  • Patent number: 10018570
    Abstract: Provided are methods and systems for inspecting surfaces of various components, such as evaluating height deviations on these surfaces. A method involves aggregating inspection data from multiple line scanners into a combined data set. This combined data set represents a portion of the surface that is larger than the field of measurement any one of the scanners. Furthermore, each pair of adjacent scanners operate at different periods of time to avoid interference. Because operating periods are offset, surface portions scanned by the pair of adjacent scanners can overlap without interference. This overlap of the scanned portions ensures that the entire surface is analyzed. The position of scanners relative to the inspection surface may be changed in between the scans and, in some embodiments, even during the scan. This approach allows precise scanning of large surfaces.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 10, 2018
    Assignee: The Boeing Company
    Inventors: Luke C. Ingram, Anthony W. Baker, Steven A. Dorris, Christopher P. Bellavia
  • Publication number: 20180128751
    Abstract: Provided are methods and systems for inspecting surfaces of various components, such as evaluating height deviations on these surfaces. A method involves aggregating inspection data from multiple line scanners into a combined data set. This combined data set represents a portion of the surface that is larger than the field of measurement any one of the scanners. Furthermore, each pair of adjacent scanners operate at different periods of time to avoid interference. Because operating periods are offset, surface portions scanned by the pair of adjacent scanners can overlap without interference. This overlap of the scanned portions ensures that the entire surface is analyzed. The position of scanners relative to the inspection surface may be changed in between the scans and, in some embodiments, even during the scan. This approach allows precise scanning of large surfaces.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 10, 2018
    Applicant: The Boeing Company
    Inventors: Luke C. Ingram, Anthony W. Baker, Steven A. Dorris, Christopher P. Bellavia
  • Publication number: 20170341314
    Abstract: Systems and methods are provided for verifying the placement of tows by a robot. One embodiment includes a robot that includes an end effector that lays up tows, actuators that reposition the end effector, a memory storing a Numerical Control (NC) program, and a robot controller that directs the actuators to reposition the end effector based on the NC program, and instructs the end effector to lay up tows based on the NC program. The system also includes a sensor system comprising an imaging device that acquires images of the tows as the tows are laid-up, a measuring device that generates input as tows are laid-up by the end effector, and a sensor controller that receives images from the imaging device and the input from the measuring device, and updates stored data to correlate the images with instructions in the NC program, based on the input.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Anthony W Baker, Steven A Dorris, Christopher P Bellavia, Hugh L Taylor, Luke C Ingram, Kenny P Bowers