Patents by Inventor Luke Hanley

Luke Hanley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10622203
    Abstract: A mass analyzing apparatus and system are disclosed for time-of-flight (“TOF”) mass spectrometry analysis. A representative system includes a first electrostatic mirror prism to reflect a first ion beam and provide an intermediate ion beam having an intermediate TOF focus and having a spatial dispersion of ions proportional to ion kinetic energies; and a second electrostatic mirror prism to reflect the second ion beam and converge the spatial dispersion of ions to provide a third, recombined ion beam having an output TOF focus; and an ion detector arranged at the output TOF focus to receive and detect the ions of the third ion beam. A bandpass filter may be arranged at the intermediate TOF focus to selectively allow propagation of ions of the second ion beam having a selected range of ion kinetic energies. Configurations having additional electrostatic mirror prisms are disclosed, including for tandem MS-MS and selectable time-of-flight.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 14, 2020
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Igor Vladimirovich Veryovkin, Luke Hanley
  • Publication number: 20180323053
    Abstract: A mass analyzing apparatus and system are disclosed for time-of-flight (“TOF”) mass spectrometry analysis. A representative system includes a first electrostatic mirror prism to reflect a first ion beam and provide an intermediate ion beam having an intermediate TOF focus and having a spatial dispersion of ions proportional to ion kinetic energies; and a second electrostatic mirror prism to reflect the second ion beam and converge the spatial dispersion of ions to provide a third, recombined ion beam having an output TOF focus; and an ion detector arranged at the output TOF focus to receive and detect the ions of the third ion beam. A bandpass filter may be arranged at the intermediate TOF focus to selectively allow propagation of ions of the second ion beam having a selected range of ion kinetic energies. Configurations having additional electrostatic mirror prisms are disclosed, including for tandem MS-MS and selectable time-of-flight.
    Type: Application
    Filed: November 30, 2016
    Publication date: November 8, 2018
    Inventors: Igor Vladimirovich Veryovkin, Luke Hanley
  • Publication number: 20100000607
    Abstract: The present invention provides a method of producing a nanocomposite film on a substrate. The method involves co-deposition of gaseous lead salt clusters in a conducting polymer film, such as a conductive polythiophene, on the substrate. The polymer film preferably is simultaneously deposited with the lead salt clusters, e.g., by co-depositing organic monomers and/or oligomers onto the substrate in the presence of gaseous lead salt clusters. Preferred lead salts are PbS, PbTe and PbSe. Devices and articles of manufacture including a nanocomposite film of the invention are also disclosed.
    Type: Application
    Filed: September 12, 2007
    Publication date: January 7, 2010
    Inventors: Luke Hanley, Igor L. Bolotin, Daniel J. Asunskis, Amanda T. Wroble, Adam M. Zachary
  • Patent number: 7179508
    Abstract: Conducting polymers having improved optical properties, and a method of manufacturing the conducting polymers, are disclosed. The conducting polymers are prepared by a process wherein organic ions and neutral oligomers are deposited simultaneously on a substrate surface to provide a conducting polymer film.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: February 20, 2007
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Luke Hanley, Sanja Tepavcevic, Yongsoo Choi
  • Patent number: 6942873
    Abstract: The present invention provides a novel substrate for use in growing cells and for the study of mechanobiology. The membrane of the present invention comprises appropriate microtopography and surface chemical modifications to facilitate the production of adherent and oriented cells that phenotypically resemble cells in vivo.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: September 13, 2005
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brenda Russell, Tejal A. Desai, Luke Hanley
  • Publication number: 20040247796
    Abstract: Conducting polymers having improved optical properties, and a method of manufacturing the conducting polymers, are disclosed. The conducting polymers are prepared by a process wherein organic ions and neutral oligomers are deposited simultaneously on a substrate surface to provide a conducting polymer film.
    Type: Application
    Filed: May 17, 2004
    Publication date: December 9, 2004
    Inventors: Luke Hanley, Sanja Tepavcevic, Yongsoo Choi
  • Publication number: 20020081726
    Abstract: The present invention provides a novel substrate for use in growing cells and for the study of mechanobiology. The membrane of the present invention comprises appropriate microtopography and surface chemical modifications to facilitate the production of adherent and oriented cells that phenotypically resemble cells in vivo.
    Type: Application
    Filed: September 24, 2001
    Publication date: June 27, 2002
    Inventors: Brenda Russell, Tejal A. Desai, Luke Hanley