Patents by Inventor Luke J. Currano

Luke J. Currano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230363685
    Abstract: A system for muscle activity sensing and feedback includes a base textile, an electrode coupled to the base textile, a sensor coupled to the base textile, a controller coupled to the base textile, and a feedback element coupled to the base textile. The feedback element is in communication with the controller. The feedback element receives a feedback signal from the controller and imparts feedback to a user based on an electrical signal from the electrode and/or a sensor signal from the sensor.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 16, 2023
    Inventors: Korine A. Ohiri, Luke J. Currano, Luke E. Osborn, Eric Q. Nguyen, Christopher J. Dohopolski
  • Patent number: 11786153
    Abstract: A wearable sensor system includes a flexible patch, an electronic circuit disposed on the flexible patch, and a disposable sensor disposed on the flexible patch and connected to the electronic circuit via a socket. The disposable sensor detects a chemical compound. The electronic circuit generates a detection signal commensurate with the chemical compound detected by the disposable sensor. The disposable sensor is removably plugged into the socket, thereby permitting replacement of the disposable sensor upon satisfaction of a predetermined condition. A battery disposed is on the flexible patch and connected to the electronic circuit to power the electronic circuit. A transceiver is connected to the electronic circuit, wherein the transceiver transmits the detection signal.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: October 17, 2023
    Assignee: The Johns Hopkins University
    Inventors: Konstantinos Gerasopoulos, Julia B. Patrone, Leslie H. Hamilton, Luke J. Currano, Matthew A. Hagedon, Felix Connor Sage, Mekbib Astatke
  • Publication number: 20230135677
    Abstract: A fabrication method includes depositing a semiconductor material onto a substrate, applying hard mask layer and a photoresist layer, and performing lithography to form voids in the photoresist layer that form a pattern. Additionally, the method may include patterning the hard mask layer based on the pattern in the photoresist layer and etching the semiconductor material based on the patterned hard mask layer to form a cavity in the semiconductor material, and performing atomic layer deposition to deposit pillar material into the cavity including the sidewalls of the cavity such that the pillar material accumulates inwardly from the sidewalls until the cavity is filled. The method may also include planarizing to remove the hard mask layer and pillar material disposed above a pillar height from a surface of the substrate, and removing the semiconductor material to release a pillar of the pillar material supported by the substrate.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 4, 2023
    Inventors: Lance H. Oh, David B. Shrekenhamer, Luke J. Currano, Christine M. Zgrabik
  • Patent number: 11460607
    Abstract: An apparatus includes a substrate, a first patterned layer, and a second patterned layer. The first patterned layer may be coupled to the substrate and may have a first metasurface pattern. The second patterned layer disposed separately from the substrate and the first patterned layer, and may have a second metasurface pattern. Movement of the first patterned layer relative to the second patterned layer may be controllable via control circuitry such that a gap distance of a gap between the first patterned layer and the second patterned layer is changed to cause a transmittance for radiant energy of a selected wavelength passing through the apparatus to change from a first transmittance value to a second transmittance value.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: October 4, 2022
    Assignee: The Johns Hopkins University
    Inventors: David B. Shrekenhamer, Luke J. Currano, Konstantinos Gerasopoulos, Joseph A. Miragliotta, Joshua B. Broadwater, Garret T. Bonnema
  • Publication number: 20210219895
    Abstract: A muscle activity sensor includes a base textile, an electrode, and an interconnect. The base textile is configured to apply a compression force against a dermal surface of the user. The electrode is coupled to the base textile and includes a sensor layer including a conductive textile coupled to a dermal side of the base textile. The sensor layer is configured to receive electrical signals associated with muscle activity of the user. The electrode may also be configured to provide the electrical signals as an output signal. The interconnect may be coupled to the base textile over a distance from the electrode to an interconnect junction contact such that the interconnect moves with the base textile as the user moves. The interconnect may be further configured to deliver the output signal from the electrode to the interconnect junction contact.
    Type: Application
    Filed: November 10, 2020
    Publication date: July 22, 2021
    Inventors: Luke J. Currano, Korine A. Ohiri, Leslie H. Hamilton, Matthew T. McGuire, Paul J. Biermann, Leah M. Strohsnitter
  • Publication number: 20200138343
    Abstract: A wearable sensor system includes a flexible patch, an electronic circuit disposed on the flexible patch, and a disposable sensor disposed on the flexible patch and connected to the electronic circuit via a socket. The disposable sensor detects a chemical compound. The electronic circuit generates a detection signal commensurate with the chemical compound detected by the disposable sensor. The disposable sensor is removably plugged into the socket, thereby permitting replacement of the disposable sensor upon satisfaction of a predetermined condition. A battery disposed is on the flexible patch and connected to the electronic circuit to power the electronic circuit. A transceiver is connected to the electronic circuit, wherein the transceiver transmits the detection signal.
    Type: Application
    Filed: August 30, 2019
    Publication date: May 7, 2020
    Inventors: Konstantinos Gerasopoulos, Julia B. Patrone, Leslie H. Hamilton, Luke J. Currano, Matthew A. Hagedon, Felix Connor Sage, Mekbib Astatke
  • Publication number: 20200014464
    Abstract: An apparatus includes a substrate, a first patterned layer, and a second patterned layer. The first patterned layer may be coupled to the substrate and may have a first metasurface pattern. The second patterned layer disposed separately from the substrate and the first patterned layer, and may have a second metasurface pattern. Movement of the first patterned layer relative to the second patterned layer may be controllable via control circuitry such that a gap distance of a gap between the first patterned layer and the second patterned layer is changed to cause a transmittance for radiant energy of a selected wavelength passing through the apparatus to change from a first transmittance value to a second transmittance value.
    Type: Application
    Filed: July 4, 2019
    Publication date: January 9, 2020
    Inventors: David B. Shrekenhamer, Luke J. Currano, Konstantinos Gerasopoulos, Joseph A. Miragliotta, Joshua B. Broadwater, Garret T. Bonnema
  • Patent number: 9297746
    Abstract: A reaction characteristic detector comprising a ladder assembly including a plurality of rungs, where each rung in the plurality of rungs comprises a reaction passage determiner spaced a distance from a point of an energetic material reaction initiation. Each reaction passage determiner has at least one characteristic that is configured to change in response to the reaction occurring proximate to the reaction passage determiner.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 29, 2016
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven J. Apperson, Christopher J. Morris, Luke J. Currano, Collin R. Becker, Madan Dubey
  • Patent number: 8829373
    Abstract: An acceleration switch array having at least two acceleration switches. Each acceleration switch includes a substrate, an anchor attached to the substrate, an electrically conductive mass disposed around the anchor and secured to the anchor by a spring assembly which permits movement of the mass relative to the anchor, and a plurality of electrical contacts positioned at circumferentially spaced positions around and outwardly from the mass. These electrical contacts are aligned along at least one orthogonal axis. A resistor array is electrically connected between the electric contacts of each acceleration switch for each orthogonal axis so that, upon contact between the mass and any of the electrical contacts, an electrical resistance is presented at an output terminal that is unique for each electrical contact for each acceleration switch.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 9, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Luke J. Currano, Larry D. Thomas, Jr., Collin R. Becker, Gabriel L. Smith, Brian Isaacson
  • Publication number: 20140076696
    Abstract: An acceleration switch array having at least two acceleration switches. Each acceleration switch includes a substrate, an anchor attached to the substrate, an electrically conductive mass disposed around the anchor and secured to the anchor by a spring assembly which permits movement of the mass relative to the anchor, and a plurality of electrical contacts positioned at circumferentially spaced positions around and outwardly from the mass. These electrical contacts are aligned along at least one orthogonal axis. A resistor array is electrically connected between the electric contacts of each acceleration switch for each orthogonal axis so that, upon contact between the mass and any of the electrical contacts, an electrical resistance is presented at an output terminal that is unique for each electrical contact for each acceleration switch.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 20, 2014
    Applicant: U.S. Government as represented by the Ssecretary of the Army
    Inventors: Luke J. Currano, Larry D. Thomas, JR., Collin R. Becker, Gabriel L. Smith, Brian Isaacson
  • Patent number: 8611565
    Abstract: An apparatus and method for creating a MEMS directional sensor system capable of determining direction from at least two microphones to a sound source over a wide range of frequencies is disclosed. By utilizing a stiff beam stand-off architecture that relies on a unique manufacturing technique in a MEMS device, such as described herein, a very small set of microphones, on the order of a few micrometers, can be designed with unsurpassed ability to detect a sound source location.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 17, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Luke J. Currano, Danny Gee
  • Publication number: 20130143330
    Abstract: A reaction characteristic detector comprising a ladder assembly including a plurality of rungs, where each rung in the plurality of rungs comprises a reaction passage determiner spaced a distance from a point of an energetic material reaction initiation. Each reaction passage determiner has at least one characteristic that is configured to change in response to the reaction occurring proximate to the reaction passage determiner.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Inventors: Steven J. Apperson, Christopher J. Morris, Luke J. Currano, Collin R. Becker, Madan Dubey
  • Patent number: 8425704
    Abstract: Silicon-based explosive devices and methods of manufacture are provided. In this regard, a representative method involves: providing a doped silicon substrate; depositing undoped silicon on a first side of the substrate; and infusing an oxidizer into an area bounded at least in part by the undoped silicon; wherein the undoped silicon limits an exothermic reaction of the doped silicon to the bounded area. Another representative method involves: providing a doped silicon substrate; depositing a masking layer of low-pressure chemical vapor deposited (LPCVD) Silicon nitride to the first side of the substrate; patterning the nitride mask and etching the porous silicon, and infusing oxidizer into an area bounded by the LPCVD nitride; wherein the silicon nitride limits an exothermic reaction of the doped silicon to the bounded area.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: April 23, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Luke J. Currano, Ronald G. Polcawich, Wayne Churaman, Mark Gelak
  • Publication number: 20120174808
    Abstract: Silicon-based explosive devices and methods of manufacture are provided. In this regard, a representative method involves: providing a doped silicon substrate; depositing undoped silicon on a first side of the substrate; and infusing an oxidizer into an area bounded at least in part by the undoped silicon; wherein the undoped silicon limits an exothermic reaction of the doped silicon to the bounded area. Another representative method involves: providing a doped silicon substrate; depositing a masking layer of low-pressure chemical vapor deposited (LPCVD) Silicon nitride to the first side of the substrate; patterning the nitride mask and etching the porous silicon, and infusing oxidizer into an area bounded by the LPCVD nitride; wherein the silicon nitride limits an exothermic reaction of the doped silicon to the bounded area.
    Type: Application
    Filed: August 4, 2009
    Publication date: July 12, 2012
    Inventors: Luke J. Currano, Ronald G. Polcawich, Wayne Churaman, Mark Gelak
  • Publication number: 20110311078
    Abstract: An apparatus and method for creating a MEMS directional sensor system capable of determining direction from at least two microphones to a sound source over a wide range of frequencies is disclosed. By utilizing a stiff beam stand-off architecture that relies on a unique manufacturing technique in a MEMS device, such as described herein, a very small set of microphones, on the order of a few micrometers, can be designed with unsurpassed ability to detect a sound source location.
    Type: Application
    Filed: April 14, 2011
    Publication date: December 22, 2011
    Inventors: Luke J. Currano, Danny Gee