Patents by Inventor Luke Lester

Luke Lester has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060017063
    Abstract: A semiconductor device is supported by a substrate with a smaller lattice constant. A metamorphic buffer provides a transition from the smaller lattice constant of the substrate to the larger lattice constant of the semiconductor device. In one application, the semiconductor device has a lattice constant of between approximately 6.1 and 6.35 angstroms, metamorphic buffer layers include Sb (e.g., AlInSb buffer layers), and the substrate has a smaller lattice constant (e.g., Si, InP or GaAs substrates).
    Type: Application
    Filed: March 10, 2005
    Publication date: January 26, 2006
    Inventors: Luke Lester, Larry Dawson, Edwin Pease
  • Publication number: 20050199870
    Abstract: Symmetric quantum dots are embedded in quantum wells. The symmetry is achieved by using slightly off-axis substrates and/or overpressure during the quantum dot growth. The quantum dot structure can be used in a variety of applications, including semiconductor lasers.
    Type: Application
    Filed: October 21, 2004
    Publication date: September 15, 2005
    Inventors: Allen Gray, Andreas Stintz, Kevin Malloy, Luke Lester, Petros Varangis
  • Patent number: 6816525
    Abstract: A quantum dot active region is disclosed in which quantum dot layers are formed using a self-assembled growth technique. In one embodiment, growth parameters are selected to control the dot density and dot size distribution to achieve desired optical gain spectrum characteristics. In one embodiment, the distribution in dot size and the sequence of optical transition energy values associated with the quantum confined states of the dots are selected to facilitate forming a continuous optical gain spectrum over an extended wavelength range. In another embodiment, the optical gain is selected to increase the saturated ground state gain for wavelengths of 1260 nanometers and greater. In other embodiments, the quantum dots are used as the active region in laser devices, including tunable lasers and monolithic multi-wavelength laser arrays.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: November 9, 2004
    Inventors: Andreas Stintz, Petros M. Varangis, Kevin J. Malloy, Luke Lester, Timothy C. Newell, Hua Li
  • Patent number: 6782021
    Abstract: A quantum dot vertical cavity surface-emitting laser has a low threshold gain. Top and bottom mirrors have a low mirror loss, with at least one of the mirrors being laterally oxidized to form semiconductor/oxide mirror pairs. In one embodiment, mode control layers reduce the optical field intensity in contact layers, reducing optical absorption. In one embodiment, delamination features are included to inhibit the tendency of laterally oxidized mirrors from delaminating.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: August 24, 2004
    Inventors: Xiaodong Huang, Andreas Stintz, Kevin Malloy, Guangtian Liu, Luke Lester, Julian Cheng
  • Publication number: 20020176474
    Abstract: A quantum dot vertical cavity surface-emitting laser has a low threshold gain. Top and bottom mirrors have a low mirror loss, with at least one of the mirrors being laterally oxidized to form semiconductor/oxide mirror pairs. In one embodiment, mode control layers reduce the optical field intensity in contact layers, reducing optical absorption. In one embodiment, delamination features are included to inhibit the tendency of laterally oxidized mirrors from delaminating.
    Type: Application
    Filed: March 1, 2002
    Publication date: November 28, 2002
    Inventors: Xiaodong Huang, Andreas Stintz, Kevin Malloy, Guangtian Liu, Luke Lester, Julian Cheng