Patents by Inventor Luke W. Koblan
Luke W. Koblan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250059244Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. The disclosure provides fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cas9 or variants thereof, and nucleic acid editing proteins such as cytidine deaminase domains (e.g., novel cytidine deaminases generated by ancestral sequence reconstruction), and adenosine deaminases that deaminate adenine in DNA. Aspects of the disclosure relate to fusion proteins (e.g., base editors) that have improved expression and/or localize efficiently to the nucleus. In some embodiments, base editors are codon optimized for expression in mammalian cells. In some embodiments, base editors include multiple nuclear localization sequences (e.g., bipartite NLSs), e.g., at least two NLSs.Type: ApplicationFiled: July 31, 2024Publication date: February 20, 2025Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan, Christopher Gerard Wilson, Jordan Leigh Doman
-
Patent number: 12157760Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. The disclosure provides fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cas9 or variants thereof, and nucleic acid editing proteins such as cytidine deaminase domains (e.g., novel cytidine deaminases generated by ancestral sequence reconstruction), and adenosine deaminases that deaminate adenine in DNA. Aspects of the disclosure relate to fusion proteins (e.g., base editors) that have improved expression and/or localize efficiently to the nucleus. In some embodiments, base editors are codon optimized for expression in mammalian cells. In some embodiments, base editors include multiple nuclear localization sequences (e.g., bipartite NLSs), e.g., at least two NLSs.Type: GrantFiled: May 23, 2019Date of Patent: December 3, 2024Assignees: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan, Christopher Gerard Wilson, Jordan Leigh Doman
-
Patent number: 12084663Abstract: Provided herein are systems, compositions, and methods for the incorporation of unnatural amino acids into proteins via nonsense suppression or rare codon suppression. Nonsense codons and rare codons may be introduced into the coding sequence of a protein of interest using a CRISPR/Cas9-based nucleobase editor described herein. The nucleobase editors are able to be programmed by guide nucleotide sequences to edit the target codons in the coding sequence of the protein of interest. Also provided are application enabled by the technology described herein.Type: GrantFiled: November 14, 2022Date of Patent: September 10, 2024Assignee: President and Fellows of Harvard CollegeInventors: Juan Pablo Maianti, David R. Liu, Luke W. Koblan
-
Publication number: 20240287487Abstract: Aspects of this disclosure provide compositions, strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. Fusion proteins capable of inducing a cytosine (C) to guanine (G) change (i.e., transversion changes) in a nucleic acid (e.g., genomic DNA) are provided. Fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9) and nucleic acid editing proteins or protein domains, e.g., deaminase domains, polymerase domains, base excision enzymes, and/or DNA repair proteins, are also provided. Methods for targeted nucleic acid editing are also provided. Reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9), and nucleic acid editing proteins or domains, are further provided in the present disclosure.Type: ApplicationFiled: June 10, 2022Publication date: August 29, 2024Applicants: The Broad Institute, Inc., President and Fellows of Harvard College, The Regents of the University of California, Massachusetts Institute of TechnologyInventors: Luke W. Koblan, David R. Liu, Mandana Arbab, Max Walt Shen, Andrew Vito Anzalone, Jeffrey Hussmann
-
Publication number: 20240173430Abstract: The disclosure provides adenosine deaminases that are capable of deaminating adenosine in DNA to treat Hutchin-son-Gilford progeria syndrome (HOPS). The disclosure also provides fusion proteins, guide RNAs and compositions comprising a Cas9 (e.g., a Cas9 nickase) domain and adenosine deaminases that deaminate adenosine in DNA, for example in a LNA gene. In some embodiments, adenosine deaminases provided herein are used to correct a C1824T mutation in LMNA. In some embodiments, the methods and compositions provided herein are used to treat Hutchinson-Gilford progeria syndrome (HGPS).Type: ApplicationFiled: September 5, 2019Publication date: May 30, 2024Applicants: The Broad Institute, Inc., Baylor College of Medicine, Vanderbilt University, President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan, Jonathan D. Brown, Charles Yang Lin
-
Publication number: 20240035017Abstract: Some aspects of this disclosure provide compositions, strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins capable of inducing a cytosine (C) to guanine (G) change in a nucleic acid (e.g., genomic DNA) are provided. In some embodiments, fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9) and nucleic acid editing proteins or protein domains, e.g., deaminase domains, polymerase domains, and/or base excision enzymes are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9), and nucleic acid editing proteins or domains, are provided.Type: ApplicationFiled: November 28, 2022Publication date: February 1, 2024Applicant: President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan
-
Publication number: 20230193295Abstract: Provided herein are systems, compositions, and methods for the incorporation of unnatural amino acids into proteins via nonsense suppression or rare codon suppression. Nonsense codons and rare codons may be introduced into the coding sequence of a protein of interest using a CRISPR/Cas9-based nucleobase editor described herein. The nucleobase editors are able to be programmed by guide nucleotide sequences to edit the target codons in the coding sequence of the protein of interest. Also provided are application enabled by the technology described herein.Type: ApplicationFiled: November 14, 2022Publication date: June 22, 2023Applicant: President and Fellows of Harvard CollegeInventors: Juan Pablo Maianti, David R. Liu, Luke W. Koblan
-
Patent number: 11542509Abstract: Provided herein are systems, compositions, and methods for the incorporation of unnatural amino acids into proteins via nonsense suppression or rare codon suppression. Nonsense codons and rare codons may be introduced into the coding sequence of a protein of interest using a CRISPR/Cas9-based nucleobase editor described herein. The nucleobase editors are able to be programmed by guide nucleotide sequences to edit the target codons in the coding sequence of the protein of interest. Also provided are application enabled by the technology described herein.Type: GrantFiled: August 24, 2017Date of Patent: January 3, 2023Assignee: President and Fellows of Harvard CollegeInventors: Juan Pablo Maianti, David R. Liu, Luke W. Koblan
-
Patent number: 11542496Abstract: Some aspects of this disclosure provide compositions, strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins capable of inducing a cytosine (C) to guanine (G) change in a nucleic acid (e.g., genomic DNA) are provided. In some embodiments, fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9) and nucleic acid editing proteins or protein domains, e.g., deaminase domains, polymerase domains, and/or base excision enzymes are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9), and nucleic acid editing proteins or domains, are provided.Type: GrantFiled: March 9, 2018Date of Patent: January 3, 2023Assignee: President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan
-
Publication number: 20210230577Abstract: Some aspects of this disclosure provide compositions, strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins capable of inducing a cytosine (C) to guanine (G) change in a nucleic acid (e.g., genomic DNA) are provided. In some embodiments, fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9) and nucleic acid editing proteins or protein domains, e.g., deaminase domains, polymerase domains, and/or base excision enzymes are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9), and nucleic acid editing proteins or domains, are provided.Type: ApplicationFiled: March 9, 2018Publication date: July 29, 2021Applicant: President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan
-
Publication number: 20210198330Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. The disclosure provides fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cas9 or variants thereof, and nucleic acid editing proteins such as cytidine deaminase domains (e.g., novel cytidine deaminases generated by ancestral sequence reconstruction), and adenosine deaminases that deaminate adenine in DNA. Aspects of the disclosure relate to fusion proteins (e.g., base editors) that have improved expression and/or localize efficiently to the nucleus. In some embodiments, base editors are codon optimized for expression in mammalian cells. In some embodiments, base editors include multiple nuclear localization sequences (e.g., bipartite NLSs), e.g., at least two NLSs.Type: ApplicationFiled: May 23, 2019Publication date: July 1, 2021Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Luke W. Koblan, Christopher Gerard Wilson, Jordan Leigh Doman
-
Publication number: 20200010835Abstract: Provided herein are systems, compositions, and methods for the incorporation of unnatural amino acids into proteins via nonsense suppression or rare codon suppression. Nonsense codons and rare codons may be introduced into the coding sequence of a protein of interest using a CRISPR/Cas9-based nucleobase editor described herein. The nucleobase editors are able to be programmed by guide nucleotide sequences to edit the target codons in the coding sequence of the protein of interest. Also provided are application enabled by the technology described herein.Type: ApplicationFiled: August 24, 2017Publication date: January 9, 2020Applicant: President and Fellows of Harvard CollegeInventors: Juan Pablo Maianti, David R. Liu, Luke W. Koblan