Patents by Inventor LULU YAO

LULU YAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970572
    Abstract: Embodiments of the presently disclosed technology provide a synergistic combination of a conjugated open-shell donor-acceptor polymer with a carbon-based compound (e.g., reduced graphene oxide) to produce a composite electrode material which demonstrates state-of-the-art capacitance and potential window, with excellent kinetics and cycle life. The conjugated open-shell donor-acceptor polymer may comprise a plurality of alternating electron-rich monomers (i.e., donors) and electron-deficient monomers (i.e., acceptors) bonded together via a conjugated backbone. The conjugated backbone may comprise a connection of n-orbitals of the plurality of monomers in alternating single and double bonds that facilitates unpaired electron delocalization—thereby stabilizing charge for the polymer. The carbon-based compound of the composite electrode material may provide porous, conductive scaffolds for the composite electrode material, resulting in electrodes scalable to microns-thick films with fast kinetics.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: April 30, 2024
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE UNIVERSITY OF SOUTHERN MISSISSIPPI
    Inventors: Tse Nga Ng, Lulu Yao, Jason Azoulay
  • Publication number: 20230087931
    Abstract: Embodiments of the presently disclosed technology provide a synergistic combination of a conjugated open-shell donor-acceptor polymer with a carbon-based compound (e.g., reduced graphene oxide) to produce a composite electrode material which demonstrates state-of-the-art capacitance and potential window, with excellent kinetics and cycle life. The conjugated open-shell donor-acceptor polymer may comprise a plurality of alternating electron-rich monomers (i.e., donors) and electron-deficient monomers (i.e., acceptors) bonded together via a conjugated backbone. The conjugated backbone may comprise a connection of n-orbitals of the plurality of monomers in alternating single and double bonds that facilitates unpaired electron delocalization—thereby stabilizing charge for the polymer. The carbon-based compound of the composite electrode material may provide porous, conductive scaffolds for the composite electrode material, resulting in electrodes scalable to microns-thick films with fast kinetics.
    Type: Application
    Filed: June 14, 2022
    Publication date: March 23, 2023
    Inventors: Tse Nga Ng, Lulu Yao, Jason Azoulay
  • Publication number: 20210355043
    Abstract: The invention discloses a photocatalytic foliar fertilization method, relating to agriculture technology. To be specific, the solution containing photocatalysts and polyols is sprayed on the leaves of crops to provide nitrogen fertilizer under sunlight; the photocatalysts are nanocatalysts responding to the sunlight spectrum, of which the conduction band position is lower than ?0.092 V(vs NHE); the mass concentration of photocatalysts in the solution is 100˜2000 mg/L, and the volume fraction of polyols accounts for 1%˜20%. In the invention, with the introduction of hole sacrificial agents to constrain the annihilation of photogenerated carriers, the electrons can be generated over the catalysts under sunlight and then react with dinitrogen to form ammonia as nitrogen fertilizer on the leaves of crops. This method has no demand for extra supplementation of nitrogenous fertilizer. Besides, it improves the utilization rate of nitrogen with a simple, secure and convenient fertilization.
    Type: Application
    Filed: April 20, 2021
    Publication date: November 18, 2021
    Inventors: WEIRONG ZHAO, YIFAN LIU, YINGYING MA, SHANSHAN GUO, LULU YAO, CHENYANG HUANGFU, ZIRUI YU