Patents by Inventor Lun Kai Cheng

Lun Kai Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9170366
    Abstract: The invention relates to a sensor system comprising a waveguide, which waveguide comprises a grating in at least a part of the waveguide, which waveguide further comprises a coating, the coating comprising a polymer, which polymer comprises a chain, in which chain are present an aromatic group and a chemical group selected from the group of sulfonyl groups, carbonyl groups, carbonate groups, fluorocarbon groups, siloxane groups, pyridine groups and amide groups.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 27, 2015
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Arjen Boersma, Theodorus Henricus Cornelus Panken, Lun Kai Cheng
  • Publication number: 20150226622
    Abstract: A pressure sensing assembly (1), comprising: an elongate, axially extending tube (100), having a flexible tube wall (102) that encloses an inner pressure chamber (106); and at least one sensor unit (200), including: two tube wall fixation devices (210), connected to the tube wall (102) at respective axially spaced apart positions, and configured to fix respective diameters (D, d) of the tube wall at said positions; and a first strain sensing element (220), connected to the tube wall (102) at a first position axially in between said two tube wall devices (210), and configured to provide a first signal indicative of an axial elongation of the tube wall resulting from a change in axial curvature of the tube wall when a pressure differential between the inner pressure chamber (106) and an outside environment (108) of the tube is applied across the tube wall at said first position.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 13, 2015
    Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk oderzoek TNO
    Inventors: Lun Kai Cheng, Peter Martijn Toet, Rik Jansen
  • Publication number: 20150153247
    Abstract: An optical sensor interrogation system can have a light source arranged for emitting light; a first optical arrangement arranged for intercepting the light and to forward the light to an optical sensor and to receive light therefrom. The wavelength reference is adapted to provide a reference wavelength. The system can further have a second optical arrangement adapted to receive reflected light from the optical sensor, a lens system for transferring the light into a beam and a scanning assembly including a scanning unit and/or a diffractive optical element. The system can still further have a detector for receiving optical response from the scanning assembly and a data processing system. A method is used to manufacture an optical sensor interrogation system.
    Type: Application
    Filed: May 6, 2013
    Publication date: June 4, 2015
    Inventors: Lun Kai Cheng, Remco Alexander Nieuwland, Peter Martijn Toet, Michiel Peter Oderwald
  • Publication number: 20150033868
    Abstract: A transversal load insensitive optical waveguide includes a primary section having a core. The waveguide may further include an outer cladding. The primary section includes a primary section surface and the outer cladding includes an exterior surface mechanically attached to the primary section surface by an interior cladding structure forming a mechanical connection. The cladding structure is such that for at least part of a distance between each two radial corresponding points on the exterior surface and the primary section surface respectively, the mechanical connection deviates from being radial, so that a radially-directed load on an exterior surface of the outer cladding is deflected by the cladding structure.
    Type: Application
    Filed: January 25, 2013
    Publication date: February 5, 2015
    Inventors: Lun Kai Cheng, Peter Martijn Toet
  • Patent number: 8831388
    Abstract: The invention relates to a waveguide, comprising a grating in at least a part of the waveguide, which waveguide comprises a coating, the coating comprising a polymer, which polymer comprises an aliphatic chain, which aliphatic chain is provided with hydrophilic side-chains. The invention further relates to a sensor system comprising a waveguide according to any one of the preceding claims, a light source, and a photo-detector.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 9, 2014
    Assignee: Nederlandse Organisate voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Arjen Boersma, Tatiana Johanna Judith Teerling, Theodorus Henricus Cornelus Panken, Lun Kai Cheng
  • Patent number: 8234931
    Abstract: An assembly comprising a fluid channel and a flowmeter, the flowmeter (1) comprising at least one vortex shedder (2) extending in the channel (C), each vortex shedder (2) being configured to generate Karman vortices (V) in fluid flowing through the channel (C) during operation, wherein each vortex shedder (2) is provided with a first fiber Bragg grating (FBG) of a fiber Bragg grating sensor (3, 7, FBG), wherein a Karman vortex frequency (fe) of the vortices (V) generated by the vortex shedder (2) is detectable utilizing a fiber Bragg grating (FBG) sensor signal relating to the respective first fiber Bragg grating (FBG) of that vortex shedder (2).
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 7, 2012
    Assignee: Nederlandse Organisatie Voor Toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventors: Lun Kai Cheng, Marinus Carolus Adrianus Maria Peters, Wouter Schiferli
  • Publication number: 20110200285
    Abstract: The invention relates to a waveguide, comprising a grating in at least a part of the waveguide, which waveguide comprises a coating, the coating comprising a polymer, which polymer comprises an aliphatic chain, which aliphatic chain is provided with hydrophilic side-chains. The invention further relates to a sensor system comprising a waveguide according to any one of the preceding claims, a light source, and a photo-detector.
    Type: Application
    Filed: December 19, 2008
    Publication date: August 18, 2011
    Inventors: Arjen Boersma, Tatiana Johanna Judith Teerling, Theodorus Henricus Cornelus Panken, Lun Kai Cheng
  • Patent number: 7751059
    Abstract: A level sensor for determining a height of a substrate. In one configuration, the level sensor forms part of a lithographic apparatus that includes a projection lens system. The level sensor generates one or more measurement beams and directs the measurement beam to a measurement spot on a substrate having a first reflecting surface, and produces a reflected measurement beam. The level sensor also generates one or more reference beams. A detector detects both the reflected measurement beam and the reference beam, respectively, and produces a measurement signal and a reference signal, respectively, the measurement signal being indicative for the height at the measurement spot. A processor that receives these signals and corrects the measurement signal based on the reference signal.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: July 6, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Nicolaas Antonius Allegondus Johannes Van Asten, Oana Cristina Balan, Luberthus Ouwehand, Machiel Jacobus Johannes Viguurs, Alexander Charles Franciscus Anna Van Well, Lun Kai Cheng, Huibert Blokland, Elke Van Loenhout, Hans Baltus Bakker
  • Publication number: 20100018323
    Abstract: An assembly comprising a fluid channel and a flowmeter, the flowmeter (1) comprising at least one vortex shedder (2) extending in the channel (C), each vortex shedder (2) being configured to generate Karman vortices (V) in fluid flowing through the channel (C) during operation, wherein each vortex shedder (2) is provided with a first fiber Bragg grating (FBG) of a fiber Bragg grating sensor (3, 7, FBG), wherein a Karman vortex frequency (fe) of the vortices (V) generated by the vortex shedder (2) is detectable utilizing a fiber Bragg grating (FBG) sensor signal relating to the respective first fiber Bragg grating (FBG) of that vortex shedder (2).
    Type: Application
    Filed: December 18, 2007
    Publication date: January 28, 2010
    Inventors: Lun Kai Cheng, Marinus Carolus Adrianus Maria Peters, Wouter Schiferli
  • Publication number: 20080309915
    Abstract: The invention relates to a level sensor for determining a height of a substrate. The level sensor generates one or more measurement beam and directs the measurement beam to a measurement spot on the substrate and produces a reflected measurement beam. The level sensor also generates one or more reference beams. A detector detects both the reflected measurement beam and the reference beam, respectively, and produces a measurement signal and a reference signal, respectively, the measurement signal being indicative for the height at the measurement spot. A processor that receives these signals and corrects the measurement signal based on the reference signal. The level sensor has an optical arrangement in a predetermined area close to where the substrate is to be located. The measurement beam and the reference beam propagate along substantially equal optical paths of propagation in the predetermined area.
    Type: Application
    Filed: August 8, 2008
    Publication date: December 18, 2008
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nicolaas Antonius Allegondus Johannes Van Asten, Oana Cristina Balan, Luberthus Ouwehand, Machiel Jacobus Johannes Viguurs, Alexander Charles Franciscus Anna Van Well, Lun Kai Cheng, Huibert Blokland, Elke Van Loenhout, Hans Baltus Bakker
  • Patent number: 7411667
    Abstract: The invention relates to a level sensor for determining a height of a substrate. The level sensor generates one or more measurement beam and directs the measurement beam to a measurement spot on the substrate and produces a reflected measurement beam. The level sensor also generates one or more reference beams. A detector detects both the reflected measurement beam and the reference beam, respectively, and produces a measurement signal and a reference signal, respectively, the measurement signal being indicative for the height at the measurement spot. A processor that receives these signals and corrects the measurement signal based on the reference signal. The level sensor has an optical arrangement in a predetermined area close to where the substrate is to be located. The measurement beam and the reference beam propagate along substantially equal optical paths of propagation in the predetermined area.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: August 12, 2008
    Assignee: ASML Netherlands B.V.
    Inventors: Nicolaas Antonius Allegondus Johannes Van Asten, Oana Cristina Balan, Luberthus Ouwehand, Machiel Jacobus Johannes Viguurs, Alexander Charles Franciscus Anna Van Well, Lun Kai Cheng, Huibert Blokland, Elke Van Loenhout, Hans Baltus Bakker
  • Patent number: 7369248
    Abstract: In measuring an optical path length difference, light from a light source is guided through a first and a second path. A three-way coupler combines light from the first and the second path in at least three combination, with at least three mutually different added relative phase displacements. A detector measures interference intensities of the at least three combinations. From the intensities, a calculation unit determines a phase difference between the light from the first and second path while eliminating an effect of a contrast between the light from the first and second path.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: May 6, 2008
    Assignee: Nederlandse Organisatie Voor-Toegepast Natuurwetenschappelijk Onderzoek Tno
    Inventor: Lun Kai Cheng
  • Patent number: 7061609
    Abstract: An optical wavelength analyser including: an entrance slit (4) for receiving a light beam (3) including signals with various wavelengths and passing the beam at least partly; a diffractor (6, 7, 9) for receiving the passed beam and diffracting the signals dependent on their wavelength; a detector (8) including adjacent detector elements (32, 33, 35, 36, 38, 39) for receiving the diffracted signals and generating their output signals; a processor (21) for determining the wavelengths from the output signals, in which the received light beam has a spatially uniform intensity; the diffractor diffracts each signal on a different detector element subset, consisting of at least a first element (32, 33, 35, 36, 38, 39.) for receiving at least a first signal with a first signal level; the processor determines each signal's wavelength dependent on the first signal level and a calibration value.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: June 13, 2006
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Lun Kai Cheng
  • Publication number: 20030156287
    Abstract: An optical wavelength analyser including: an entrance slit (4) for receiving a light beam (3) including signals with various wavelengths and passings the beam at least partly; a diffractor (6, 7, 9) for receiving the passed beam and diffracting the signals dependent on their wavelength; a detector (8) including adjacent detector elements (32, 33, 35, 36, 38, 39) for receiving the diffracted signals and generating their output signals; a processor (21) for determining the wavelengths from the output signals, in which the received light beam has a spatially uniform intensity; the diffractor diffracts each signal on a different detector element subset, consisting of at least a first element (32, 33, 35, 36, 38, 39) for receiving at least a first signal with a first signal level; the processor determines each signal's wavelength dependent on the first signal level and a calibration value.
    Type: Application
    Filed: February 27, 2003
    Publication date: August 21, 2003
    Inventor: Lun Kai Cheng
  • Patent number: 6122225
    Abstract: Device (20) for measuring pressure waves in a liquid medium (E), comprising; one or more sensor elements (23) permeable to optical radiation; one or more support members (22) on which a sensor element (23) is arranged in each case and which is at least slightly flexible; a chamber (25) at least partly enclosed by a support member (22) and filled with the liquid medium; and a second compensation chamber (27) which is actively coupled to the first compensation chamber via an at least partially flexible wall (26), wherein the second compensation chamber is filled with gas; and detection means for detecting changes in the length of the sensor element.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: September 19, 2000
    Inventors: Lun Kai Cheng, Dick Bruijn