Patents by Inventor Lung-Chieh Cheng

Lung-Chieh Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087644
    Abstract: A forming operation of resistive memory device is provided. The operation includes: applying a pre-forming gate voltage and a pre-forming bit line voltage to a target memory cell; performing a dense switching forming operation, wherein the dense switching forming operation includes alternately performing dense set operations and dense reset operations on the target memory cell, wherein the dense set operation includes applying a dense switching gate voltage and a dense set bit line voltage; and performing a normal set operation on the target memory cell, wherein the normal set operation includes applying a normal set gate voltage and a normal set bit line voltage to the target memory cell, the normal set gate voltage is greater than the pre-forming gate voltage and the dense switching gate voltage, and the normal set bit line voltage is less than the pre-forming bit line voltage and the dense set bit line voltage.
    Type: Application
    Filed: August 29, 2023
    Publication date: March 14, 2024
    Applicant: Winbond Electronics Corp.
    Inventors: I-Hsien Tseng, Lung-Chi Cheng, Ju-Chieh Cheng, Jun-Yao Huang, Ping-Kun Wang
  • Patent number: 8679881
    Abstract: A growth method for reducing defect density of GaN includes steps of: sequentially forming a buffer growth layer, a stress release layer and a first nanometer cover layer on a substrate, wherein the first nanometer cover layer has multiple openings interconnected with the stress release layer; growing a first island in each of the openings; growing a first buffer layer and a second nanometer cover layer on the first island; and growing a second island to form a dislocated island structure. Thus, through the first nanometer cover layer and the second nanometer cover layer, multiple dislocated island structures can be directly formed to reduce manufacturing complexity as well as increase yield rate by decreasing manufacturing environment variation. Further, the epitaxial lateral over growth (ELOG) approach also effectively enhances characteristics of GaN optoelectronic semiconductor elements.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 25, 2014
    Assignee: Tekcore Co., Ltd.
    Inventors: Jen-Inn Chyi, Lung-Chieh Cheng, Hsueh-Hsing Liu, Geng-Yen Lee