Patents by Inventor Luohan Peng

Luohan Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10295763
    Abstract: Techniques for flexible coupling between an optical coupling receptacle/port of an optical transceiver housing and optical components within the same are disposed. In an embodiment, an optical transceiver housing includes an intermediate fiber with a first end optically coupled to an optical coupling port and a second end optically coupled to a multiplexer/de-multiplexer device, e.g., an arrayed waveguide grating (AWG) device, PLC splitter, and so on. The intermediate fiber may be routed in the transceiver housing in a manner that and the radius of the bends may be optimized to reduce fiber bending losses. The techniques herein are equally applicable to both ROSA and TOSA modules and may be utilized to achieve flexible coupling for multi-channel transceiver devices.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Kai-Sheng Lin, Elsie Marentes
  • Publication number: 20180348456
    Abstract: Techniques for flexible coupling between an optical coupling receptacle/port of an optical transceiver housing and optical components within the same are disposed. In an embodiment, an optical transceiver housing includes an intermediate fiber with a first end optically coupled to an optical coupling port and a second end optically coupled to a multiplexer/de-multiplexer device, e.g., an arrayed waveguide grating (AWG) device, PLC splitter, and so on. The intermediate fiber may be routed in the transceiver housing in a manner that and the radius of the bends may be optimized to reduce fiber bending losses. The techniques herein are equally applicable to both ROSA and TOSA modules and may be utilized to achieve flexible coupling for multi-channel transceiver devices.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 6, 2018
    Inventors: I-Lung HO, Luohan PENG, Kai-Sheng LIN, Elsie MARENTES
  • Patent number: 9847434
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, the photodetectors are mounted on a photodetector mounting bar that includes a multiple conductive photodetector pads (PD pads). Each of the PD pads may be configured to receive a photodetector, and the PD pads are electrically isolated from ground such that the photodetectors are floating. The photodetector bar further includes multiple conductive transimpedance amplifier pads (TIA pads). Each of the TIA pads may be configured to receive a TIA, associated with one of the photodetectors, and to be electrically coupled to one or more ground ports of the TIA. The TIA pads are electrically connected to a common ground shared be each of said TIAs.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: December 19, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Chong Wang, Luohan Peng
  • Patent number: 9703054
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: July 11, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Joyce Li
  • Patent number: 9606145
    Abstract: A test fixture generally includes a thermoelectric cooler (TEC) configured to regulate the temperature of a device under test (DUT). The test fixture may further include a device carrier configured to secure the DUT in a desired position relative to the TEC and a spring-operated pin configured to generate a desired contact pressure between the DUT and the TEC. The desired contact pressure may be selected to achieve a thermal coupling between the DUT and the TEC that maintains the temperature of the DUT at a desired operation level.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: March 28, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Luohan Peng, Darren Tucker, Justin Lii, David Hendricks
  • Publication number: 20170075080
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
    Type: Application
    Filed: November 28, 2016
    Publication date: March 16, 2017
    Inventors: I-Lung HO, Luohan PENG, Joyce LI
  • Patent number: 9509433
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: November 29, 2016
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Joyce Li
  • Publication number: 20160284874
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, the photodetectors are mounted on a photodetector mounting bar that includes a multiple conductive photodetector pads (PD pads). Each of the PD pads may be configured to receive a photodetector, and the PD pads are electrically isolated from ground such that the photodetectors are floating. The photodetector bar further includes multiple conductive transimpedance amplifier pads (TIA pads). Each of the TIA pads may be configured to receive a TIA, associated with one of the photodetectors, and to be electrically coupled to one or more ground ports of the TIA. The TIA pads are electrically connected to a common ground shared be each of said TIAs.
    Type: Application
    Filed: March 23, 2015
    Publication date: September 29, 2016
    Inventors: I-Lung Ho, Chong Wang, Luohan Peng
  • Publication number: 20160041202
    Abstract: A test fixture generally includes a thermoelectric cooler (TEC) configured to regulate the temperature of a device under test (DUT). The test fixture may further include a device carrier configured to secure the DUT in a desired position relative to the TEC and a spring-operated pin configured to generate a desired contact pressure between the DUT and the TEC. The desired contact pressure may be selected to achieve a thermal coupling between the DUT and the TEC that maintains the temperature of the DUT at a desired operation level.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Luohan Peng, Darren Tucker, Justin Lii, David Hendricks
  • Patent number: 9236945
    Abstract: A thermally shielded multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A plurality of laser array thermal shields are thermally coupled to a temperature control device, such as a thermoelectric cooler (TEC), and thermally shield the respective lasers in the laser array in separate thermally shielded compartments. Each of the lasers may also be individually thermally controlled to provide a desired wavelength, for example, using a heater and/or cooler located in each thermally shielded compartment. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: January 12, 2016
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Jun Zheng, Luohan Peng
  • Patent number: 9225428
    Abstract: A system is provided for aligning a photodetector array to optical outputs of an optical demultiplexer in a multi-channel receiver optical subassembly (ROSA). In one embodiment, the system may include a clamp alignment fixture configured to secure a position of a photodetector mounting bar within a ROSA housing, wherein the photodetector array is disposed on the photodetector mounting bar and the photodetector array includes a plurality of photodiodes. The system may further include a motion staging device configured to adjust an orientation of the photodetector mounting bar by varying an angle of the clamp alignment fixture. The adjustment may be based on observation of the location of an optical alignment signal relative to the plurality of photodiodes, the optical alignment signal projected onto the photodetector mounting bar by the optical demultiplexer.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: December 29, 2015
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Luohan Peng, Zhengyu Miao, Hao-Hsiang Liao
  • Publication number: 20140341578
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
    Type: Application
    Filed: November 25, 2013
    Publication date: November 20, 2014
    Applicant: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Joyce Li
  • Patent number: 8831433
    Abstract: A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A temperature control system may be used to control the temperature of both the array of lasers and the AWG with the same temperature control device, e.g., a thermoelectric cooler (TEC). The multi-channel optical transceiver may also include a multi-channel receiver optical subassembly (ROSA). The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Justin Lii
  • Publication number: 20140161455
    Abstract: A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A temperature control system may be used to control the temperature of both the array of lasers and the AWG with the same temperature control device, e.g., a thermoelectric cooler (TEC). The multi-channel optical transceiver may also include a multi-channel receiver optical subassembly (ROSA). The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: APPLIED OPTOELECTRONICS, INC.
    Inventors: I-Lung Ho, Luohan Peng, Justin Lii
  • Publication number: 20140161459
    Abstract: A thermally shielded multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A plurality of laser array thermal shields are thermally coupled to a temperature control device, such as a thermoelectric cooler (TEC), and thermally shield the respective lasers in the laser array in separate thermally shielded compartments. Each of the lasers may also be individually thermally controlled to provide a desired wavelength, for example, using a heater and/or cooler located in each thermally shielded compartment. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Application
    Filed: February 6, 2013
    Publication date: June 12, 2014
    Applicant: APPLIED OPTOELECTRONICS, INC.
    Inventors: I-Lung Ho, Jun Zheng, Luohan Peng