Patents by Inventor Lutgard De Jonghe

Lutgard De Jonghe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050263405
    Abstract: A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.
    Type: Application
    Filed: May 2, 2005
    Publication date: December 1, 2005
    Inventors: Craig Jacobson, Steven Visco, Lutgard De Jonghe, Craig Jacobson, Constantin Stefan
  • Publication number: 20050186469
    Abstract: Disclosed are compositions and methods for alleviating the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface. Such a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room. Production processes involving lithium are thereby very considerably simplified. One example of such a process is the processing of lithium to form negative electrodes for lithium metal batteries.
    Type: Application
    Filed: March 28, 2005
    Publication date: August 25, 2005
    Inventors: Lutgard De Jonghe, Steven Visco, Yevgeniy Nimon, A. Sukeshini
  • Publication number: 20050175894
    Abstract: Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
    Type: Application
    Filed: April 14, 2004
    Publication date: August 11, 2005
    Inventors: Steven Visco, Bruce Katz, Yevgeniy Nimon, Lutgard De Jonghe
  • Patent number: 6911280
    Abstract: Disclosed are compositions and methods for alleviating the problem of reaction of lithium or other alkali or alkaline earth metals with incompatible processing and operating environments by creating a ionically conductive chemical protective layer on the lithium or other reactive metal surface. Such a chemically produced surface layer can protect lithium metal from reacting with oxygen, nitrogen or moisture in ambient atmosphere thereby allowing the lithium material to be handled outside of a controlled atmosphere, such as a dry room. Production processes involving lithium are thereby very considerably simplified. One example of such a process in the processing of lithium to form negative electrodes for lithium metal batteries.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: June 28, 2005
    Assignee: PolyPlus Battery Company
    Inventors: Lutgard De Jonghe, Steven J. Visco, Yevgeniy S. Nimon, A. Mary Sukeshini
  • Publication number: 20050100792
    Abstract: Active metal fuel cells are provided. An active metal fuel cell has a renewable active metal (e.g., lithium) anode and a cathode structure that includes an electronically conductive component (e.g., a porous metal or alloy), an ionically conductive component (e.g., an electrolyte), and a fluid oxidant (e.g., air, water or a peroxide or other aqueous solution). The pairing of an active metal anode with a cathode oxidant in a fuel cell is enabled by an ionically conductive protective membrane on the surface of the anode facing the cathode.
    Type: Application
    Filed: April 14, 2004
    Publication date: May 12, 2005
    Inventors: Steven Visco, Yevgeniy Nimon, Bruce Katz, Lutgard De Jonghe
  • Publication number: 20040248009
    Abstract: Voltage delay in an active metal anode/liquid cathode battery cell can be significantly reduced or completely alleviated by coating the active metal anode (e.g., Li) surface with a thin layer of an inorganic compound with Li-ion conductivity using chemical treatment of Li surface. Particularly, preferred examples of such compounds include lithium phosphate, lithium metaphosphate, and/or their mixtures or solid solutions with lithium sulphate. These compounds can be formed on the Li surface by treatment with diluted solutions of the following individual acids: H3PO4, HPO3 and H2SO4, their acidic salts, or their binary or ternary mixtures in a dry organic solvent compatible with Li, for instance in 1,2-DME; by various deposition techniques. Such chemical protection of the Li or other active metal electrode significantly reduces the voltage delay due to protected anode's improved stability toward the electrolyte.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Applicant: PolyPlus Battery Company
    Inventors: Lutgard De Jonghe, Yevgeniy S. Nimon, Steven J. Visco