Patents by Inventor Lutz Dorfmueller

Lutz Dorfmueller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8182665
    Abstract: A sensor element is provided for gas sensors, in particular to determine particles in gas mixtures, the sensor element including at least one electrochemical measuring element exposed to the gas mixture to be determined, and at least one temperature-measuring element integrated into the sensor element. The temperature-measuring element includes a resistor track, which has an electric resistance of less than 180 Ohm at 0° C. The resistor track may thus be produced by thin-foil technology, such as screen printing, for example.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: May 22, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Lutz Dorfmueller, Sabine Roesch, Detlef Heimann, Stefan Rodewald, Helmut Marx, Henrico Runge, Harald Guenschel, Ralf Schmidt, Markus Siebert, Lothar Diehl, Thorsten Ochs, Juergen Sindel, Juergen Ruth, Andreas Schaak, Henrik Schittenhelm
  • Patent number: 8035404
    Abstract: A method is described for controlling the soot deposition on sensors. A sensor element is provided, which includes a first electrode and a second electrode. Different measuring voltages U1 and U2 can be applied to the sensor element. During a first time period t1, the sensor element is operated at a higher voltage U1 until a triggering threshold AP of the sensor element is exceeded, while it is operated at a voltage U2, which is different from higher voltage U1, U2 being lower than voltage U1, during a second time period t2.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 11, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Frank Schnell, Lutz Dorfmueller, Ralf Schmidt, Sabine Roesch, Helmut Marx, Henrik Schittenhelm
  • Patent number: 7872466
    Abstract: A sensor for determining the concentration of particles in gases, in particular of soot particles, has at least one substrate element, and a measuring area between at least one first and one second measuring electrode, the two measuring electrodes being configured so that by applying a voltage between the measuring electrodes, an asymmetric electric field is formed on the measuring area. The sides of the first and second measuring electrodes, facing one another, may not be parallel to one another, for example. Furthermore, at least one measuring electrode may have a structure along the side facing the other measuring electrode or along the finger electrodes.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: January 18, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Lutz Dorfmueller, Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm, Gerd Teike
  • Publication number: 20090217737
    Abstract: A sensor element is provided for gas sensors, in particular to determine particles in gas mixtures, the sensor element including at least one electrochemical measuring element exposed to the gas mixture to be determined, and at least one temperature-measuring element integrated into the sensor element. The temperature-measuring element includes a resistor track, which has an electric resistance of less than 180 Ohm at 0° C. The resistor track may thus be produced by thin-foil technology, such as screen printing, for example.
    Type: Application
    Filed: October 20, 2006
    Publication date: September 3, 2009
    Applicant: ROBERT BOSCH GMBH
    Inventors: Lutz Dorfmueller, Sabine Roesch, Detlef Heimann, Stefan Rodewald, Helmut Marx, Henrico Runge, Harald Guenschel, Ralf Schmidt, Markus Siebert, Lothar Diehl, Thorsten Ochs, Juergen Sindel, Juergen Ruth, Andreas Schaak, Henrik Schittenhelm
  • Publication number: 20090051376
    Abstract: A method is described for controlling the soot deposition on sensors. A sensor element is provided, which includes a first electrode and a second electrode. Different measuring voltages U1 and U2 can be applied to the sensor element. During a first time period t1, the sensor element is operated at a higher voltage U1 until a triggering threshold AP of the sensor element is exceeded, while it is operated at a voltage U2, which is different from higher voltage U1, U2 being lower than voltage U1, during a second time period t2.
    Type: Application
    Filed: April 15, 2005
    Publication date: February 26, 2009
    Inventors: Frank Schnell, Lutz Dorfmueller, Ralf Schmidt, Sabine Roesch, Helmut Marx, Henrik Schittenhelm
  • Publication number: 20080024111
    Abstract: A sensor for determining the concentration of particles in gases, in particular of soot particles, has at least one substrate element, and a measuring area between at least one first and one second measuring electrode, the two measuring electrodes being configured so that by applying a voltage between the measuring electrodes, an asymmetric electric field is formed on the measuring area. The sides of the first and second measuring electrodes, facing one another, may not be parallel to one another, for example. Furthermore, at least one measuring electrode may have a structure along the side facing the other measuring electrode or along the finger electrodes.
    Type: Application
    Filed: October 17, 2005
    Publication date: January 31, 2008
    Inventors: Lutz Dorfmueller, Ralf Schmidt, Markus Siebert, Sabine Roesch, Helmut Marx, Henrik Schittenhelm, Gerd Teike
  • Patent number: 6935193
    Abstract: A device for measuring an angle and/or the torque acting on a rotatable body is proposed according to the invention, whereby the rotational angle is detected by means of magnetic or optical sensors. In particular, in a preferred exemplary embodiment, two devices (7, 8) are proposed, each of which comprises two optically readable code tracks. The two code tracks (1a, 1b or 2a, 2b) on one device (7 or 8) are similar in design and are offset in relation to each other, so that associated sensors (4) output a digital signal. The rotational angle is calculated based on the lag between the two digital signals. In a further embodiment it is provided that a torsion element (5) having a known torsional stiffness is situated between the two devices (7, 8). Torque transferred by the rotatable body (3) can also be calculated therefore from the angular difference of the two devices 7, 8. The device is used preferably in the steering axle of a motor vehicle.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: August 30, 2005
    Assignee: Robert Bosch GmbH
    Inventors: David Heisenberg, Thomas Klotzbuecher, Gunter Haas, Lutz Dorfmueller, Henrik Siegle, Axel Wenzler, Klaus Marx, Franz Jost, Ralf Noltemeyer, Martin Freitag
  • Patent number: 6761075
    Abstract: The invention proposes a method for determining a rotation angle (&PHgr;) and/or an angular difference (&dgr;) in a divided shaft (3), which has a number of phase tracks (1a, 1b, 2a, and 2b) disposed on it, which are provided with codes. Via an evaluation unit, each group of tracks (1a, 1b, 2a, and 2b) supplies a phase signal (&agr;1, &agr;2), which is respectively ambiguous with regard to a rotation of the shaft (3). The at least two phase signals (&agr;1, &agr;2) are added up in a weighted fashion to produce a signal S from which the integer portion and the non-integer portion are calculated. The non-integer portion is proportional to the angular difference (&dgr;) between the two track groups. The torque (M) is determined through multiplication with the spring rate of an interposed torque rod. The unambiguous torque (&PHgr;) is determined from the integer portion of the signal (S) and a phase value (&agr;1) or (&agr;2) with the aid of a weighted addition.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 13, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Siegbert Steinlechner, Lutz Dorfmueller, Axel Wenzler, Ralf Noltemeyer
  • Publication number: 20030145663
    Abstract: A device for measuring an angle and/or the torque acting on a rotatable body is proposed according to the invention, whereby the rotational angle is detected by means of magnetic or optical sensors. In particular, in a preferred exemplary embodiment, two devices (7, 8) are proposed, each of which comprises two optically readable code tracks. The two code tracks (1a, 1b or 2a, 2b) on one device (7 or 8) are similar in design and are offset in relation to each other, so that associated sensors (4) output a digital signal. The rotational angle is calculated based on the lag between the two digital signals. In a further embodiment it is provided that a torsion element (5) having a known torsional stiffness is situated between the two devices (7, 8). Torque transferred by the rotatable body (3) can also be calculated therefore from the angular difference of the two devices 7, 8. The device is used preferably in the steering axle of a motor vehicle.
    Type: Application
    Filed: October 3, 2002
    Publication date: August 7, 2003
    Inventors: David Heisenberg, Thomas Klotzbuecher, Gunter Haas, Lutz Dorfmueller, Henrik Siegle, Axel Wenzler, Klaus Marx, Franz Jost, Ralf Noltemeyer, Martin Freitag
  • Patent number: 6518323
    Abstract: A polymer compound containing a ceramic powder and a polymer is described, the ceramic powder having a specific surface area of more than 1.8·108 m2/m3 and constituting more than 5 vol. % of the polymer compound, the polymer being shear resistant, and the pore sizes in the polymer compound being 3-15 nm. Furthermore, a method for manufacturing this polymer compound, its use, and a sintered body manufactured therefrom are also described.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: February 11, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Gerd Scheying, Johannes Kanters, Ingrid Wuehrl, Ulrich Eisele, Horst Boeder, Lutz Dorfmueller, Werner Gruenwald