Patents by Inventor LUZHENG LIU

LUZHENG LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8691502
    Abstract: Attenuated, replication-deficient viruses such as vaccinia viruses are used to deliver an exogenous viral, bacterial, parasitic or tumor antigen to an epidermal tissue such as the skin, lungs or gastrointestinal tract, which has been mechanically disrupted, in an amount effective to elicit or stimulate a cell mediated immune response. The epidermal tissue may be mechanically disrupted by a device such as a scarification needle or an abrader device. The epidermis may be mechanically disrupted prior to, at the same time, or immediately after the administration of the vaccine. The vaccine can be used to induce immunity against a pathogen, such as a virus, bacteria, or parasite, or against a cancer in a subject that has or is at risk of developing cancer. In some embodiments a co-stimulatory molecule, a growth factor, an adjuvant and/or a cytokine is administered before, with or after the viral vaccine. In some embodiments, the co-stimulatory molecule is co-expressed with the antigen by the virus.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 8, 2014
    Assignee: TremRx, Inc.
    Inventors: Thomas S. Kupper, Luzheng Liu, Rachael A. Clark
  • Publication number: 20110274649
    Abstract: Attenuated, replication-deficient viruses such as vaccinia viruses are used to deliver an exogenous viral, bacterial, parasitic or tumor antigen to an epidermal tissue such as the skin, lungs or gastrointestinal tract, which has been mechanically disrupted, in an amount effective to elicit or stimulate a cell mediated immune response. The epidermal tissue may be mechanically disrupted by a device such as a scarification needle or an abrader device. The epidermis may be mechanically disrupted prior to, at the same time, or immediately after the administration of the vaccine. The vaccine can be used to induce immunity against a pathogen, such as a virus, bacteria, or parasite, or against a cancer in a subject that has or is at risk of developing cancer. In some embodiments a co-stimulatory molecule, a growth factor, an adjuvant and/or a cytokine is administered before, with or after the viral vaccine. In some embodiments, the co-stimulatory molecule is co-expressed with the antigen by the virus.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 10, 2011
    Inventors: Thomas S. Kupper, Luzheng Liu, Rachael A. Clark
  • Publication number: 20090263830
    Abstract: This invention provides a non-radioactive assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This assay is predicated on the discovery that apoptosis pathway activation and, in particular, caspase activity, provides a measure of cytotoxic effector cell activity. In one embodiment, measurement of CTL-induced caspase activation in target cells is achieved through detection of the specific cleavage of fluorogenic caspase substrates. This assay reliably detects antigen-specific CTL killing of target cells, and provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level.
    Type: Application
    Filed: March 3, 2009
    Publication date: October 22, 2009
    Applicant: Oncoimmunin, Inc.
    Inventors: BEVERLY PACKARD, MARTIN J. BROWN, MARK FEINBERG, LUZHENG LIU, GUIDO SILVESTRI, ANN CHAHROUDI, AKIRA KOMORIYA
  • Publication number: 20030211548
    Abstract: This invention provides a non-radioactive assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This assay is predicated on the discovery that apoptosis pathway activation and, in particular, caspase activity, provides a measure of cytotoxic effector cell activity. In one embodiment, measurement of CTL-induced caspase activation in target cells is achieved through detection of the specific cleavage of fluorogenic caspase substrates. This assay reliably detects antigen-specific CTL killing of target cells, and provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level.
    Type: Application
    Filed: January 28, 2003
    Publication date: November 13, 2003
    Applicant: Oncolmmunin, Inc.
    Inventors: Beverly Packard, Martin J. Brown, Mark Feinberg, Luzheng Liu, Guido Silvestri, Ann Chahroudi, Akira Komoriya