Patents by Inventor Álvaro Torres Salas

Álvaro Torres Salas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11246222
    Abstract: A 3D printed drilling template (20, 30a, 30b, 30c) including: a rigid framework able to be manipulated by an operator or an automaton, and a set of traversing (22, 32a, 32b, 32c, 33c) orifices in the framework and arranged to guide the drilling of holes into a structure on which the drilling template is mounted, wherein the drilling template (20, 30a, 30b, 30c) is designed or revised on an ad-hoc basis and manufactured by 3D printing and using a 3D printing material based on a polymer material mixed with powdered graphene.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: February 8, 2022
    Assignee: Airbus Operations S.L.
    Inventors: Alvaro Jara Rodelgo, Alvaro Torres Salas, Elena Moya Sanz, Paloma Llorente Garcia
  • Patent number: 11052996
    Abstract: A lifting device including: a movable discontinuity (1) located in a surface of the lifting device, the movable discontinuity (1) being movable between: an active position in which the movable discontinuity (1) acts as vortex generator, and a passive position in which the movable discontinuity (1) is integrated into the surface of the lifting surface, a conduit (2) located in the spanwise direction of the lifting surface and in communication with the movable discontinuity (1), the lifting surface including openings (3) in its surface spanwise distant from each other in communication with the conduit (2), the movable discontinuity (1) and the conduit (2) being configured such that when an airflow goes through the conduit (2), this airflow activates the movable discontinuity (1) to act as a vortex generator of the lifting surface.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: July 6, 2021
    Assignee: Airbus Operations S.L.
    Inventors: Carlos García Nieto, Iker Vélez De Mendizábal Alonso, Soledad Crespo Peña, Enrique Guinaldo Fernández, Jesús Javier Vázquez Castro, Álvaro Torres Salas
  • Patent number: 10906631
    Abstract: A lifting surface comprising a movable discontinuity located in the surface of the lifting surface. The movable discontinuity is movable between an active position in which the movable discontinuity acts as vortex generator, and a passive position in which the movable discontinuity is integrated into the surface of the lifting surface without acting as vortex generator. The lifting surface may be in an elevator, the elevator being rotatable around a hinge line with respect to the rest of the lifting surface. A bar is rigidly joined to the elevator. The bar, the elevator and the movable discontinuity are configured such that when the elevator rotates with respect to the rest of the lifting surface, the bar moves the movable discontinuity that departs from the surface of the lifting surface, acting as a vortex generator.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: February 2, 2021
    Assignee: AIRBUS OPERATIONS S.L.
    Inventors: Carlos García Nieto, Iker Vélez De Mendizábal Alonso, Soledad Crespo Peña, Enrique Guinaldo Fernández, Jesús Javier Vázquez Castro, Álvaro Torres Salas
  • Patent number: 10745105
    Abstract: A tip structure for an aircraft airfoil, such as a control surface (ailerons, flaps, elevators, rudders, etc) and/or a lifting surface (wings, HTP's, VTP's) is a unitary body and includes a tip shell and a metallic material on the outer surface of the tip shell suitable to withstand a lighting strike. The tip shell has been obtained by a single-stage injection molding process using a thermoplastic composite material having fibers dispersed therein, and the metallic material has been integrally formed with the tip shell.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: August 18, 2020
    Assignee: Airbus Operations, S.L.
    Inventors: Soledad Crespo Peña, Francisco Javier Honorato Ruiz, Iker Vélez De Mendizabal Alonso, Carlos García Nieto, Enrique Guinaldo Fernández, Álvaro Torres Salas, Pablo Cebolla Garrofe, Álvaro Calero Casanova
  • Patent number: 10532807
    Abstract: A leading edge section with laminar flow control includes: a perforated outer skin, a perforated inner skin, and a plurality of suction chambers formed between the outer skin and the inner skin. The leading edge section includes a plurality of stringers span-wise arranged at the leading edge section, and integrally formed with the outer skin, such that the inner skin is joined to the stringers. A method for manufacturing a leading edge section integrating a laminar flow control system is described, wherein a perforated inner skin is joined with a perforated outer skin having a plurality of stringers integrally formed with the outer skin, such that suction chambers are defined by a part of the outer skin, a part of the inner skin and a pair of stringers.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: January 14, 2020
    Assignee: Airbus Operations, S.L.
    Inventors: Carlos García Nieto, Enrique Guinaldo Fernández, Pablo Cebolla Garrofe, Iker Vélez De Mendizabal Alonso, Soledad Crespo Peña, Francisco Javier Honorato Ruiz, Álvaro Torres Salas, Álvaro Calero Casanova
  • Patent number: 10377464
    Abstract: This disclosure relates to the manufacturing of a leading edge section with hybrid laminar flow control for an aircraft. A manufacturing method involves: providing an outer hood, a plurality of elongated modules, first and second C-shaped profiles having comprising cavities, and an inner mandrel; assembling an injection molding tool by placing each profile on each end of the inner mandrel, arranging a first extreme of each elongated module in one cavity of the first profile and a second extreme of the module in another cavity of the second profile, both cavities positioned in the same radial direction; and placing the hood on first and second profiles to close the tool. Further, the injection molding tool is closed and filled with an injection compound comprising thermoplastic and short-fiber. Finally, the compound is hardened and demolded.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 13, 2019
    Assignee: AIRBUS OPERATIONS, S.L.
    Inventors: Pablo Cebolla Garrofe, Álvaro Calero Casanova, Soledad Crespo Peña, Carlos Garcïa Nieto, Iker Vélez De Mendizábal Alonso, Enrique Guinaldo Fernandez, Francisco Javier Honorato Ruiz, Alvaro Torres Salas
  • Publication number: 20190168445
    Abstract: A manufacturing process to form a positioning control tool, such as a gyroscope, by using a three-dimensional (3D) printer printing a polymer material mixed with powdered graphene (12a) components (410) on a piezoelectric substrate (205), the components (410) include: a resonator (411) transducer configured to create a first surface acoustic wave (215); a pair of reflectors (412a, 412b) configured to reflect the first surface acoustic wave (215); a structure (413) which, when subjected to a Coriolis force, creates a second surface acoustic wave (230); a first sensor transducer (414) configured to sense the second surface acoustic wave (230); and a second sensor transducer (415) configured to sense a residual surface acoustic wave from a second region of the surface (210) of the piezoelectric substrate free of the structures that respond to the Coriolis force.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 6, 2019
    Inventors: Alvaro JARA RODELGO, Alvaro TORRES SALAS, Elena MOYA SANZ, Paloma LLORENTE GARCIA
  • Publication number: 20190150290
    Abstract: A 3D printed drilling template (20, 30a, 30b, 30c) including: a rigid framework able to be manipulated by an operator or an automaton, and a set of traversing (22, 32a, 32b, 32c, 33c) orifices in the framework and arranged to guide the drilling of holes into a structure on which the drilling template is mounted, wherein the drilling template (20, 30a, 30b, 30c) is designed or revised on an ad-hoc basis and manufactured by 3D printing and using a 3D printing material based on a polymer material mixed with powdered graphene.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 16, 2019
    Inventors: Alvaro JARA RODELGO, Alvaro TORRES SALAS, Elena MOYA SANZ, Paloma LLORENTE GARCIA
  • Publication number: 20180201361
    Abstract: A lifting device including: a movable discontinuity (1) located in a surface of the lifting device, the movable discontinuity (1) being movable between: an active position in which the movable discontinuity (1) acts as vortex generator, and a passive position in which the movable discontinuity (1) is integrated into the surface of the lifting surface, a conduit (2) located in the spanwise direction of the lifting surface and in communication with the movable discontinuity (1), the lifting surface including openings (3) in its surface spanwise distant from each other in communication with the conduit (2), the movable discontinuity (1) and the conduit (2) being configured such that when an airflow goes through the conduit (2), this airflow activates the movable discontinuity (1) to act as a vortex generator of the lifting surface.
    Type: Application
    Filed: January 16, 2018
    Publication date: July 19, 2018
    Inventors: Carlos GARCÍA NIETO, Iker VÉLEZ DE MENDIZÁBAL ALONSO, Soledad CRESPO PEÑA, Enrique GUINALDO FERNÁNDEZ, Jesús Javier VÁZQUEZ CASTRO, Álvaro TORRES SALAS
  • Publication number: 20180201360
    Abstract: A lifting surface comprising a movable discontinuity located in the surface of the lifting surface. The movable discontinuity is movable between an active position in which the movable discontinuity acts as vortex generator, and a passive position in which the movable discontinuity is integrated into the surface of the lifting surface without acting as vortex generator. The lifting surface may be in an elevator, the elevator being rotatable around a hinge line with respect to the rest of the lifting surface. A bar is rigidly joined to the elevator. The bar, the elevator and the movable discontinuity are configured such that when the elevator rotates with respect to the rest of the lifting surface, the bar moves the movable discontinuity that departs from the surface of the lifting surface, acting as a vortex generator.
    Type: Application
    Filed: January 16, 2018
    Publication date: July 19, 2018
    Inventors: Carlos GARCÍA NIETO, Iker VÉLEZ DE MENDIZÁBAL ALONSO, Soledad CRESPO PEÑA, Enrique GUINALDO FERNÁNDEZ, Jesús Javier VÁZQUEZ CASTRO, Álvaro TORRES SALAS
  • Publication number: 20180022438
    Abstract: A tip structure for an aircraft airfoil, such as a control surface (ailerons, flaps, elevators, rudders, etc) and/or a lifting surface (wings, HTP's, VTP's) is a unitary body and includes a tip shell and a metallic material on the outer surface of the tip shell suitable to withstand a lighting strike. The tip shell has been obtained by a single-stage injection molding process using a thermoplastic composite material having fibers dispersed therein, and the metallic material has been integrally formed with the tip shell.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 25, 2018
    Applicant: Airbus Operations, S.L.
    Inventors: Soledad Crespo Peña, Francisco Javier Honorato Ruiz, Iker Vélez De Mendizabal Alonso, Carlos García Nieto, Enrique Guinaldo Fernández, Álvaro Torres Salas, Pablo Cebolla Garrofe, Álvaro Calero Casanova
  • Publication number: 20170259902
    Abstract: An aircraft aerodynamic surface includes a torsion box having an upper skin, a lower skin, and a front spar, and a leading edge having an external shell and an impact resisting structure. The external shell may be shaped with an aerodynamic leading edge profile, being configured to provide Laminar Flow Control (LFC) to the leading edge. The impact resisting structure is spanwise arranged between the external shell and the front spar, and is configured for absorbing a bird strike to prevent damage in the front spar. Also, at least one of the external shell and the impact resisting structure is fitted with the upper and lower skins of the torsion box to thereby facilitate leading edge exchange.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 14, 2017
    Applicant: Airbus Operations, S.L.
    Inventors: Pablo Cebolla Garrofe, Iker Vélez De Mendizabal Alonso, Soledad Crespo Peña, Álvaro Calero Casanova, Carlos García Nieto, Enrique Guinaldo, Francisco Javier Honorato Ruiz, Álvaro Torres Salas
  • Publication number: 20170259903
    Abstract: This disclosure relates to the manufacturing of a leading edge section with hybrid laminar flow control for an aircraft. A manufacturing method involves: providing an outer hood, a plurality of elongated modules, first and second C-shaped profiles having comprising cavities, and an inner mandrel; assembling an injection moulding tool by placing each profile on each end of the inner mandrel, arranging a first extreme of each elongated module in one cavity of the first profile and a second extreme of the module in another cavity of the second profile, both cavities positioned in the same radial direction; and placing the hood on first and second profiles to close the tool. Further, the injection moulding tool is closed and filled with an injection compound comprising thermoplastic and short-fiber. Finally, the compound is hardened and demoulded.
    Type: Application
    Filed: March 13, 2017
    Publication date: September 14, 2017
    Inventors: Pablo CEBOLLA GARROFE, Álvaro CALERO CASANOVA, Soledad CRESPO PEÑA, Carlos GARCÍA NIETO, Iker VÉLEZ DE MENDIZÁBAL ALONSO, Enrique GUINALDO FERNANDEZ, Francisco Javier HONORATO RUIZ, Alvaro TORRES SALAS
  • Publication number: 20170197706
    Abstract: A leading edge section with laminar flow control includes: a perforated outer skin, a perforated inner skin, and a plurality of suction chambers formed between the outer skin and the inner skin. The leading edge section includes a plurality of stringers span-wise arranged at the leading edge section, and integrally formed with the outer skin, such that the inner skin is joined to the stringers. A method for manufacturing a leading edge section integrating a laminar flow control system is described, wherein a perforated inner skin is joined with a perforated outer skin having a plurality of stringers integrally formed with the outer skin, such that suction chambers are defined by a part of the outer skin, a part of the inner skin and a pair of stringers.
    Type: Application
    Filed: January 10, 2017
    Publication date: July 13, 2017
    Applicant: Airbus Operations, S.L.
    Inventors: Carlos García Nieto, Enrique Guinaldo Fernández, Pablo Cebolla Garrofe, Iker Vélez De Mendizabal Alonso, Soledad Crespo Peña, Francisco Javier Honorato Ruiz, Álvaro Torres Salas, Álvaro Calero Casanova