Patents by Inventor Ly Mai

Ly Mai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11031520
    Abstract: The present disclosure provides methodologies for manufacturing photovoltaic devices. In particular, the disclosure relates to the use of hydrogen during manufacturing of photovoltaic devices for passivating defects in the silicon and addressing light-induced degradation. The methodologies in the present disclosures take advantage of generation and manipulation of hydrogen in the neutral or charged state to optimise defect passivation. Some of the methodologies disclose use thermal treatments, illumination with sub-bandgap photons, electric fields or defects in the silicon to control the state of charge or hydrogen, move hydrogen to different locations in the device or retain hydrogen at specific locations.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: June 8, 2021
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Stuart Ross Wenham, Alison Ciesla, Darren Bagnall, Ran Chen, Malcolm David Abbott, Brett Jason Hallam, Catherine Emily Chan, Chee Mun Chong, Daniel Chen, David Neil Payne, Ly Mai, Moonyong Kim, Tsun Hang Fung, Zhengrong Shi
  • Patent number: 10910509
    Abstract: The present disclosure is directed to a method for processing a silicon wafer that allows improving performance by exploiting the properties of crystallographic imperfections. The method comprises the steps of: forming a silicon layer with crystallographic imperfections in the proximity of a surface of the silicon; exposing at least a portion of the device to hydrogen atoms in a manner such that hydrogen atoms migrate towards the region with crystallographic imperfections and into the silicon along the crystallographic imperfections; and controlling the charge state of hydrogen atoms located at the crystallographic imperfections to be positive when the imperfections are in a p-type region of the wafer; and negative when the imperfections are at an n-type region of the wafer by thermally treating the silicon while exposing the silicon to an illumination intensity of less than 10 mW/cm2.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: February 2, 2021
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Alison Ciesla, Brett Jason Hallam, Catherine Emily Chan, Chee Mun Chong, Daniel Chen, Darren Bagnall, David Neil Payne, Ly Mai, Malcolm David Abbott, Moonyong Kim, Ran Chen, Stuart Ross Wenham, Tsun Hang Fung, Zhengrong Shi
  • Publication number: 20190371960
    Abstract: The present disclosure is directed to a method for processing a silicon wafer that allows improving performance by exploiting the properties of crystallographic imperfections. The method comprises the steps of: forming a silicon layer with crystallographic imperfections in the proximity of a surface of the silicon; exposing at least a portion of the device to hydrogen atoms in a manner such that hydrogen atoms migrate towards the region with crystallographic imperfections and into the silicon along the crystallographic imperfections; and controlling the charge state of hydrogen atoms located at the crystallographic imperfections to be positive when the imperfections are in a p-type region of the wafer; and negative when the imperfections are at an n-type region of the wafer by thermally treating the silicon while exposing the silicon to an illumination intensity of less than 10 mW/cm2.
    Type: Application
    Filed: November 22, 2017
    Publication date: December 5, 2019
    Inventors: ALISON CIESLA, BRETT JASON HALLAM, CATHERINE EMILY CHAN, CHEE MUN CHONG, DANIEL CHEN, DARREN BAGNALL, DAVID NEIL PAYNE, LY MAI, MALCOLM DAVID ABBOTT, MOONYONG KIM, RAN CHEN, STUART ROSS WENHAM, TSUN HANG FUNG, ZHENGRONG SHI
  • Publication number: 20190371959
    Abstract: The present disclosure provides methodologies for manufacturing photovoltaic devices. In particular, the disclosure relates to the use of hydrogen during manufacturing of photovoltaic devices for passivating defects in the silicon and addressing light-induced degradation. The methodologies in the present disclosures take advantage of generation and manipulation of hydrogen in the neutral or charged state to optimise defect passivation. Some of the methodologies disclose use thermal treatments, illumination with sub-bandgap photons, electric fields or defects in the silicon to control the state of charge or hydrogen, move hydrogen to different locations in the device or retain hydrogen at specific locations.
    Type: Application
    Filed: November 22, 2017
    Publication date: December 5, 2019
    Inventors: STUART ROSS WENHAM, ALISON CIESLA, DARREN BAGNALL, RAN CHEN, MALCOLM DAVID ABBOTT, BRETT JASON HALLAM, CATHERINE EMILY CHAN, CHEE MUN CHONG, DANIEL CHEN, DAVID NEIL PAYNE, LY MAI, MOONYONG KIM, TSUN FUNG, ZHENGRONG SHI
  • Patent number: 10199523
    Abstract: A surface region of a semiconductor material on a surface of a semiconductor device is doped during its manufacture, by coating the surface region of the semiconductor material with a dielectric material surface layer and locally heating the surface of the semiconductor material in an area to be doped to locally melt the semiconductor material with the melting being performed in the presence of a dopant source. The heating is performed in a controlled manner such that a region of the surface of the semiconductor material in the area to be doped is maintained in a molten state without refreezing for a period of time greater than one microsecond and the dopant from the dopant source is absorbed into the molten semiconductor. The semiconductor device includes a semiconductor material structure in which a junction is formed and may incorporate a multi-layer anti-reflection coating.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: February 5, 2019
    Assignees: NEWSOUTH INNOVATIONS PTY LIMITED, SUNTECH POWER INTERNATIONAL LTD.
    Inventors: Alison Maree Wenham, Ziv Hameiri, Jing Jia Ji, Ly Mai, Zhengrong Shi, Budi Tjahjono, Stuart Ross Wenham
  • Patent number: 9947821
    Abstract: A silicon device, has a plurality of crystalline silicon regions. One crystalline silicon region is a doped crystalline silicon region. Deactivating some or all of the dopant atoms in the doped crystalline silicon region is achieved by introducing hydrogen atoms into the doped 5 crystalline silicon region, whereby the hydrogen coulombicly bonds with some or all of the dopant atoms to deactivate the respective dopant atoms. Deactivated dopant atoms may be reactivated by heating and illuminating the doped crystalline silicon region to break at least some of the dopant-hydrogen bonds while maintaining conditions to create a high concentration of neutral hydrogen atoms whereby 10 some of the hydrogen atoms diffuse from the doped crystalline silicon region without rebinding to the dopant atoms.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: April 17, 2018
    Assignee: Newsouth Innovations PTY Limited
    Inventors: Brett Jason Hallam, Matthew Bruce Edwards, Stuart Ross Wenham, Phillip George Hamer, Catherine Emily Chan, Chee Mun Chong, Pei Hsuan Lu, Ly Mai, Li Hui Song, Adeline Sugianto, Alison Maree Wenham, Guang Qi Xu
  • Patent number: 9847443
    Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: December 19, 2017
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
  • Patent number: 9824897
    Abstract: A method is provided for the processing of a device having a crystalline silicon region containing an internal hydrogen source. The method comprises: i) applying encapsulating material to each of the front and rear surfaces of the device to form a lamination; ii) applying pressure to the lamination and heating the lamination to bond the encapsulating material to the device; and iii) cooling the device, where the heating step or cooling step or both are completed under illumination.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: November 21, 2017
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Brett Jason Hallam, Matthew Bruce Edwards, Stuart Ross Wenham, Phillip George Hamer, Catherine Emily Chan, Chee Mun Chong, Pei Hsuan Lu, Ly Mai, Li Hui Song, Adeline Sugianto, Alison Maree Wenham, Guang Qi Xu
  • Publication number: 20160372625
    Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.
    Type: Application
    Filed: July 7, 2016
    Publication date: December 22, 2016
    Inventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
  • Patent number: 9412897
    Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) providing one or more hydrogen sources accessible by each surface of the device; and iii) heating the device, or a local region of the device to at least 40° C.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 9, 2016
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
  • Publication number: 20160225930
    Abstract: A silicon device, has a plurality of crystalline silicon regions. One crystalline silicon region is a doped crystalline silicon region. Deactivating some or all of the dopant atoms in the doped crystalline silicon region is achieved by introducing hydrogen atoms into the doped 5 crystalline silicon region, whereby the hydrogen coulombicly bonds with some or all of the dopant atoms to deactivate the respective dopant atoms. Deactivated dopant atoms may be reactivated by heating and illuminating the doped crystalline silicon region to break at least some of the dopant-hydrogen bonds while maintaining conditions to create a high concentration of neutral hydrogen atoms whereby 10 some of the hydrogen atoms diffuse from the doped crystalline silicon region without rebinding to the dopant atoms.
    Type: Application
    Filed: July 24, 2014
    Publication date: August 4, 2016
    Inventors: Brett Jason HALLAM, Matthew Bruce EDWARDS, Stuart Ross WENHAM, Phillip George HAMER, Catherine Emily CHAN, Chee Mun CHONG, Pei Hsuan LU, Ly MAI, Li Hui SONG, Adeline SUGIANTO, Alison Maree WENHAM, Guang Qi XU
  • Patent number: 9396072
    Abstract: The invention relates to a system for data synchronization between two or more computer terminals including, at least one client terminal, a server terminal, a communication network connecting said client and server terminals, a data string being created on said client terminal, said client terminal being configured to send the data string to the server terminal for synchronization between the two terminals, characterized in that upon synchronization failure, reconciliation data with the latest synchronization information including said data string, is configured to be stored in a database on the client terminal and resent later according to a retry counter.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 19, 2016
    Assignee: AMADEUS S.A.S.
    Inventors: Konstantin Sorokin, Huong-Ly Mai, Sarah Prioux, Herve Braganti, Eric Habermacher, Annick Whitfield
  • Publication number: 20160172213
    Abstract: A method is provided for the processing of a device having a crystalline silicon region containing an internal hydrogen source. The method comprises: i) applying encapsulating material to each of the front and rear surfaces of the device to form a lamination; ii) applying pressure to the lamination and heating the lamination to bond the encapsulating material to the device; and iii) cooling the device, where the heating step or cooling step or both are completed under illumination.
    Type: Application
    Filed: July 24, 2015
    Publication date: June 16, 2016
    Inventors: Brett Jason HALLAM, Matthew Bruce EDWARDS, Stuart Ross WENHAM, Ohillip George HAMER, Catherine Emily CHAN, Chee Mun CHONG, Pei Hsuan LU, Ly MAI, Li Hui SONG, Adeline SUGIANTO, Alison Maree MENHAM, Guang Qi XU
  • Patent number: 9190556
    Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: November 17, 2015
    Assignee: NewSouth Innovations Pty Limited
    Inventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
  • Publication number: 20150318413
    Abstract: A surface region of a semiconductor material on a surface of a semiconductor device is doped during its manufacture, by coating the surface region of the semiconductor material with a dielectric material surface layer and locally heating the surface of the semiconductor material in an area to be doped to locally melt the semiconductor material with the melting being performed in the presence of a dopant source. The heating is performed in a controlled manner such that a region of the surface of the semiconductor material in the area to be doped is maintained in a molten state without refreezing for a period of time greater than one microsecond and the dopant from the dopant source is absorbed into the molten semiconductor. The semiconductor device includes a semiconductor material structure in which a junction is formed and may incorporate a multi-layer anti-reflection coating.
    Type: Application
    Filed: June 25, 2015
    Publication date: November 5, 2015
    Applicants: Suntech Power International Ltd., NewSouth Innovations Pty Limited
    Inventors: Alison Maree Wenham, Ziv Hameiri, Ji Jing Jia, Ly Mai, Shi Zhengrong, Budi Tjahjono, Stuart Ross Wenham
  • Patent number: 9136126
    Abstract: A surface region of a semiconductor material on a surface of a semiconductor device is doped during its manufacture, by coating the surface region of the semiconductor material with a dielectric material surface layer and locally heating the surface of the semiconductor material in an area to be doped to locally melt the semiconductor material with the melting being performed in the presence of a dopant source. The heating is performed in a controlled manner such that a region of the surface of the semiconductor material in the area to be doped is maintained in a molten state without refreezing for a period of time greater than one microsecond and the dopant from the dopant source is absorbed into the molten semiconductor. The semiconductor device includes a semiconductor material structure in which a junction is formed and may incorporate a multi-layer anti-reflection coating.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: September 15, 2015
    Assignee: NewSouth Innovations Pty Limited
    Inventors: Alison Maree Wenham, Ziv Hameiri, Ji Jing Jia, Ly Mai, Shi Zhengrong, Budi Tjahjono, Stuart Ross Wenham
  • Patent number: 9040128
    Abstract: A method of photoplating a metal contact onto a surface of a cathode of a photovoltaic device is provided using light induced plating technique. The method comprises: a) immersing the photovoltaic device in a solution of metal ions, where the metal ions are a species which is to be plated onto the surface of the cathode of the photovoltaic device; and b) illuminating the photovoltaic device, using a light source of time varying intensity. This results in nett plating which is faster in a direction normal to the surface of the cathode than in a direction in a plane of the surface of the cathode.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: May 26, 2015
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Ly Mai, Alison Maree Wenham, Stuart Ross Wenham
  • Publication number: 20150132881
    Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.
    Type: Application
    Filed: December 4, 2014
    Publication date: May 14, 2015
    Inventors: STUART ROSS WENHAM, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
  • Publication number: 20150111333
    Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.
    Type: Application
    Filed: May 20, 2013
    Publication date: April 23, 2015
    Applicant: NewSouth Innovations Pty Limited
    Inventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
  • Patent number: 8962979
    Abstract: A photovoltaic device is provided in which a contact structure is formed having a plurality of heavily doped semi-conductor channels formed on a surface of a region to be contacted. The heavily doped semiconductor channels are of the same dopant polarity as the region to be contacted, and form lateral conduction paths across the surface of the region to be contacted. Contact metallization comprising conductive fingers are formed over the surface of the region to be contacted, and each conductive finger crosses at least some of the heavily doped channels to make electrical contact therewith. The contact structure is formed by forming a layer of dopant source material over the surface to be contacted, and laser doping heavily doped channels in the surface to be contacted. The contact metallization is then formed as conductive fingers formed over the surface to be contacted and may be screen printed, metal plated or may be formed as buried contacts.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 24, 2015
    Assignee: Newsouth Innovations Pty Limited
    Inventors: Stuart Ross Wenham, Budi Tjahjono, Ly Mai