Patents by Inventor Lyle D. Breiner

Lyle D. Breiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8518184
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 8384192
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Publication number: 20110163416
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 7, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Patent number: 7906393
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: March 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Publication number: 20100282164
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7771537
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7647886
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: January 19, 2010
    Assignee: Micron Technology, Inc.
    Inventors: David J. Kubista, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Kevin L. Beaman, Er-Xuan Ping, Lingyi A. Zheng, Cem Basceri
  • Patent number: 7528430
    Abstract: The invention includes a method of forming a rugged semiconductor-containing surface. A first semiconductor layer is formed over a substrate, and a second semiconductor layer is formed over the first semiconductor layer. Subsequently, a third semiconductor layer is formed over the second semiconductor layer, and semiconductor-containing seeds are formed over the third semiconductor layer. The seeds are annealed to form the rugged semiconductor-containing surface. The first, second and third semiconductor layers are part of a common stack, and can be together utilized within a storage node of a capacitor construction. The invention also includes semiconductor structures comprising rugged surfaces. The rugged surfaces can be, for example, rugged silicon.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Shenlin Chen, Trung Tri Doan, Guy T. Blalock, Lyle D. Breiner, Er-Xuan Ping
  • Patent number: 7440255
    Abstract: A capacitor construction includes a first electrode and a layer between the first electrode and a surface supporting the capacitor construction. The capacitor construction can exhibit a lower RC time constant compared to an otherwise identical capacitor construction lacking the layer. Alternatively, or additionally, the first electrode may contain Si and the layer may limit the Si from contributing to formation of metal silicide material between the first electrode and the supporting surface. The layer may be a nitride layer and may be conductive or insulative. When conductive, the layer may exhibit a first conductivity greater than a second conductivity of the first electrode. The capacitor construction may be used in memory devices.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Brent A. McClure, Casey R. Kurth, Shenlin Chen, Debra K. Gould, Lyle D. Breiner, Er-Xuan Ping, Fred D. Fishburn, Hongmei Wang
  • Patent number: 7422635
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 9, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, David J. Kubista, Cem Basceri
  • Patent number: 7405438
    Abstract: The invention includes a method of forming a rugged semiconductor-containing surface. A first semiconductor layer is formed over a substrate, and a second semiconductor layer is formed over the first semiconductor layer. Subsequently, a third semiconductor layer is formed over the second semiconductor layer, and semiconductor-containing seeds are formed over the third semiconductor layer. The seeds are annealed to form the rugged semiconductor-containing surface. The first, second and third semiconductor layers are part of a common stack, and can be together utilized within a storage node of a capacitor construction. The invention also includes semiconductor structures comprising rugged surfaces. The rugged surfaces can be, for example, rugged silicon.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: July 29, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Shenlin Chen, Trung Tri Doan, Guy T. Blalock, Lyle D. Breiner, Er-Xuan Ping
  • Patent number: 7344755
    Abstract: The present disclosure provides methods and apparatus that may be used to process microfeature workpieces, e.g., semiconductor wafers. Some aspects have particular utility in depositing TiN in a batch process. One implementation involves pretreating a surface of a process chamber by contemporaneously introducing first and second pretreatment precursors (e.g., TiCl4 and NH3) to deposit a pretreatment material on a the chamber surface. After the pretreatment, the first microfeature workpiece may be placed in the chamber and TiN may be deposited on the microfeature workpiece by alternately introducing quantities of first and second deposition precursors.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Ronald A. Weimer, Lyle D. Breiner, Er-Xuan Ping, Trung T. Doan, Cem Basceri, David J. Kubista, Lingyi A. Zheng
  • Patent number: 7321148
    Abstract: The invention encompasses a method of forming a rugged silicon-containing surface. A layer comprising amorphous silicon is provided within a reaction chamber at a first temperature. The temperature is increased to a second temperature at least 40° C. higher than the first temperature while flowing at least one hydrogen isotope into the chamber. After the temperature reaches the second temperature, the layer is seeded with seed crystals. The seeded layer is then annealed to form a rugged silicon-containing surface. The rugged silicon-containing surface can be incorporated into a capacitor construction. The capacitor construction can be incorporated into a DRAM cell, and the DRAM cell can be utilized in an electronic system.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 22, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Guy T. Blalock, Lyle D. Breiner, Er-Xuan Ping, Shenlin Chen
  • Patent number: 7279398
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Trung T. Doan, Ronald A. Weimer, Kevin L. Beaman, Lyle D. Breiner, Lingyi A. Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David J. Kubista
  • Patent number: 7268382
    Abstract: The invention includes a method of forming a rugged semiconductor-containing surface. A first semiconductor layer is formed over a substrate, and a second semiconductor layer is formed over the first semiconductor layer. Subsequently, a third semiconductor layer is formed over the second semiconductor layer, and semiconductor-containing seeds are formed over the third semiconductor layer. The seeds are annealed to form the rugged semiconductor-containing surface. The first, second and third semiconductor layers are part of a common stack, and can be together utilized within a storage node of a capacitor construction. The invention also includes semiconductor structures comprising rugged surfaces. The rugged surfaces can be, for example, rugged silicon.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: September 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Shenlin Chen, Trung Tri Doan, Guy T. Blalock, Lyle D. Breiner, Er-Xuan Ping
  • Patent number: 7258892
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: August 21, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7247581
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: July 24, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Patent number: 7235138
    Abstract: The present disclosure describes apparatus and methods for processing microfeature workpieces, e.g., by depositing material on a microelectronic semiconductor using atomic layer deposition. Some of these apparatus include microfeature workpiece holders that include gas distributors. One exemplary implementation provides a microfeature workpiece holder adapted to hold a plurality of microfeature workpieces. This workpiece holder includes a plurality of workpiece supports and a gas distributor. The workpiece supports are adapted to support a plurality of microfeature workpieces in a spaced-apart relationship to define a process space adjacent a surface of each microfeature workpiece. The gas distributor includes an inlet and a plurality of outlets, with each of the outlets positioned to direct a flow of process gas into one of the process spaces.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Ronald A. Weimer, David J. Kubista, Kevin L. Beaman, Cem Basceri
  • Patent number: 7220312
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: May 22, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Patent number: 7183208
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: February 27, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng