Patents by Inventor Lyle Gene Roybal
Lyle Gene Roybal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160091614Abstract: A radioactive waste screening system comprising at least one subsystem, at least one computer assembly operatively associated with and configured to receive measurement data from the at least one subsystem, and control logic in communication with the at least one computer assembly. The at least one subsystem is selected from the group consisting of a packaged waste screening subsystem, a volume waste screening subsystem, a subsurface waste characterization subsystem, and a surface waste characterization subsystem. The control logic is configured to verify the operability of the at least one subsystem, to control the at least one subsystem, and to assess the radioactivity of at least one material at least partially based on the measurement data received by the at least one computer assembly. A method of assessing a potentially radioactive material, and a method of determining the radioactivity of a material are also described.Type: ApplicationFiled: September 29, 2014Publication date: March 31, 2016Inventors: Douglas William Akers, Lyle Gene Roybal
-
Patent number: 8878140Abstract: Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.Type: GrantFiled: October 29, 2009Date of Patent: November 4, 2014Assignee: Battelle Energy Alliance, LLCInventors: Douglas William Akers, Lyle Gene Roybal
-
Publication number: 20140299757Abstract: Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.Type: ApplicationFiled: October 29, 2009Publication date: October 9, 2014Applicant: BATTELLE ENERGY ALLIANCE, LLCInventors: Douglas William Akers, Lyle Gene Roybal
-
Publication number: 20130239666Abstract: A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retantate for the presence of at one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.Type: ApplicationFiled: September 10, 2012Publication date: September 19, 2013Inventors: Michael Vance Carpenter, Lyle Gene Roybal, Alan Lindquist, Vincente Gallardo
-
Publication number: 20110295537Abstract: An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.Type: ApplicationFiled: May 25, 2010Publication date: December 1, 2011Applicant: BATTELLE ENERGY ALLIANCE, LLCInventors: Douglas William Akers, Lyle Gene Roybal
-
Patent number: 7732785Abstract: Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.Type: GrantFiled: November 20, 2007Date of Patent: June 8, 2010Assignee: Battelle Energy Alliance, LLCInventor: Lyle Gene Roybal
-
Patent number: 7652572Abstract: Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.Type: GrantFiled: October 9, 2006Date of Patent: January 26, 2010Assignee: Battelle Energy Alliance, LLCInventors: Lyle Gene Roybal, Dale Kent Kotter, David Thomas Rohrbaugh, David Frazer Spencer
-
Publication number: 20090224160Abstract: Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual ones the sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.Type: ApplicationFiled: November 20, 2007Publication date: September 10, 2009Inventor: Lyle Gene Roybal
-
Publication number: 20090218489Abstract: Methods of treating materials include providing positrons within the material and detecting radiation emitted upon annihilation of positron-electron pairs within the material while treating the material. Treating the material may include subjecting the material to one or more of a pressure change, a temperature change, and a change in atmosphere while detecting the radiation. Methods of characterizing materials include providing a material in a non-equilibrium state, detecting electromagnetic radiation emitted upon annihilation of positron-electron pairs within the material, and detecting a change in one or more physical or chemical characteristics of the material. Systems for treating materials include an enclosure, a positron-generating device for providing positrons within material to be treated within the enclosure, and a radiation detection device for detecting radiation emitted upon annihilation of positron-electron pairs.Type: ApplicationFiled: February 28, 2008Publication date: September 3, 2009Inventors: Douglas William Akers, Mark William Drigert, Lyle Gene Roybal
-
Publication number: 20080084301Abstract: Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.Type: ApplicationFiled: October 9, 2006Publication date: April 10, 2008Inventors: Lyle Gene Roybal, Dale Kent Kotter, David Thomas Rohrbaugh, David Frazer Spencer