Patents by Inventor Lynn E. Clark
Lynn E. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240189033Abstract: A method for determining a predicted lesion size formed in a tissue by receiving or calculating a measure of contact force between the electrode and the tissue, determining a tissue characterization, and calculating the predicted lesion size using both the measure of contact force and the tissue characterization. A system comprising an electronic control unit configured to receive or determine a measure of contact force between the electrode and the tissue, characterize the tissue based on both the measure of impedance and the measure of contact force, and cause the tissue characterization to be either (a) presented to a user, or (b) applied to calculate a metric and cause the metric to be presented to the user.Type: ApplicationFiled: December 4, 2023Publication date: June 13, 2024Inventors: Jeffrey M. Fish, Lynn E. Clark
-
Patent number: 11883106Abstract: A method for determining a predicted lesion size formed in a tissue by receiving or calculating a measure of contact force between the electrode and the tissue, determining a tissue characterization, and calculating the predicted lesion size using both the measure of contact force and the tissue characterization. A system comprising an electronic control unit configured to receive or determine a measure of contact force between the electrode and the tissue, characterize the tissue based on both the measure of impedance and the measure of contact force, and cause the tissue characterization to be either (a) presented to a user, or (b) applied to calculate a metric and cause the metric to be presented to the user.Type: GrantFiled: May 1, 2017Date of Patent: January 30, 2024Assignee: St. Jude Medical, Cardiology Division, Inc.Inventors: Jeffrey M. Fish, Lynn E. Clark
-
Patent number: 10194885Abstract: A system that automatically detects a myocardial barotrauma (i.e., tissue pop) event so that proper post-procedure care can be given includes an electronic control unit (ECU), a computer-readable memory coupled with the ECU, and detection logic stored in the memory configured to be executed by the ECU. The detection logic is configured to receive a signal generated by an electro-acoustic transducer related to acoustic activity within the patient, monitor the signal for a pre-determined indication of a barotrauma event, and output a notification when the pre-determined indication is detected. The transducer can be integrated with an extra-body patch that includes one or more electrodes for use with a medical device navigation system.Type: GrantFiled: October 2, 2012Date of Patent: February 5, 2019Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.Inventors: Israel A. Byrd, Jeffrey M. Fish, Lynn E. Clark, Saurav Paul
-
Publication number: 20170319279Abstract: A method for determining a predicted lesion size formed in a tissue by receiving or calculating a measure of contact force between the electrode and the tissue, determining a tissue characterization, and calculating the predicted lesion size using both the measure of contact force and the tissue characterization. A system comprising an electronic control unit configured to receive or determine a measure of contact force between the electrode and the tissue, characterize the tissue based on both the measure of impedance and the measure of contact force, and cause the tissue characterization to be either (a) presented to a user, or (b) applied to calculate a metric and cause the metric to be presented to the user.Type: ApplicationFiled: May 1, 2017Publication date: November 9, 2017Inventors: Jeffrey M. Fish, Lynn E. Clark
-
Patent number: 9610119Abstract: A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU) configured to acquire magnitudes for a component of a complex impedance between an electrode and tissue, and the power applied to the tissue during lesion formation. The ECU is configured to calculate a value responsive to the complex impedance component and the power. The value is indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, or a predicted tissue temperature. The method includes acquiring magnitudes for a component of a complex impedance between an electrode and tissue and the power applied during lesion formation. The method includes calculating a value responsive to the complex impedance component and the power, the value being indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, and/or a predicted tissue temperature.Type: GrantFiled: November 22, 2013Date of Patent: April 4, 2017Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn E. Clark, Jeremy D. Dando, Christopher J. Geurkink, Harry A. Puryear, Saurav Paul
-
Publication number: 20140358038Abstract: A system that automatically detects a myocardial barotrauma (i.e., tissue pop) event so that proper post-procedure care can be given includes an electronic control unit (ECU), a computer-readable memory coupled with the ECU, and detection logic stored in the memory configured to be executed by the ECU. The detection logic is configured to receive a signal generated by an electro-acoustic transducer related to acoustic activity within the patient, monitor the signal for a pre-determined indication of a barotrauma event, and output a notification when the pre-determined indication is detected. The transducer can be integrated with an extra-body patch that includes one or more electrodes for use with a medical device navigation system.Type: ApplicationFiled: October 2, 2012Publication date: December 4, 2014Inventors: Israel A. Byrd, Jeffrey M. Fish, Lynn E. Clark, Saurav Paul
-
Publication number: 20140194867Abstract: A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU) configured to acquire magnitudes for a component of a complex impedance between an electrode and tissue, and the power applied to the tissue during lesion formation. The ECU is configured to calculate a value responsive to the complex impedance component and the power. The value is indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, or a predicted tissue temperature. The method includes acquiring magnitudes for a component of a complex impedance between an electrode and tissue and the power applied during lesion formation. The method includes calculating a value responsive to the complex impedance component and the power, the value being indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, and/or a predicted tissue temperature.Type: ApplicationFiled: November 22, 2013Publication date: July 10, 2014Applicant: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn E. Clark, Jeremy D. Dando, Christopher J. Geurkink, Harry A. Puryear, Saurav Paul
-
Publication number: 20130338467Abstract: An electrode catheter device with indifferent electrode for direct current tissue therapies is disclosed. An example of the catheter device has a flexible tubing with at least one ablation electrode. The catheter device also may also be used with a sheath for introducing the flexible tubing inside a patient's body. An indifferent electrode on the sheath can provide a ground for a direct current (DC) pulse to deliver electrical energy and create an electrical field adjacent a tissue. Various other embodiments are also disclosed.Type: ApplicationFiled: November 18, 2011Publication date: December 19, 2013Applicant: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Martin M. Grasse, Richard E. Stehr, Israel A. Byrd, Lynn E. Clark, D. Curtis Deno, Troy T. Tegg, James V. Kauphusman, Saurav Paul, Jeffrey A. Schweitzer
-
Patent number: 8603084Abstract: A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU) configured to acquire magnitudes for a component of a complex impedance between an electrode and tissue, and the power applied to the tissue during lesion formation. The ECU is configured to calculate a value responsive to the complex impedance component and the power. The value is indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, or a predicted tissue temperature. The method includes acquiring magnitudes for a component of a complex impedance between an electrode and tissue and the power applied during lesion formation. The method includes calculating a value responsive to the complex impedance component and the power, the value being indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, and/or a predicted tissue temperature.Type: GrantFiled: November 16, 2010Date of Patent: December 10, 2013Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn E. Clark, Jeremy D. Dando, Christopher J. Geurkink, Harry A. Puryear, Saurav Paul
-
Publication number: 20110144657Abstract: A method and system for determining a likelihood of barotrauma occurring in tissue during the formation of a lesion therein is provided. The system includes an electronic control unit (ECU). The ECU is configured to acquire at least one value of at least one component of a complex impedance between an electrode and the tissue. The ECU is further configured to calculate an index responsive to the at least one value of the at least one complex impedance component. The index is indicative of a likelihood of barotrauma occurring in the tissue. The method comprises acquiring at least one value of at least one component of a complex impedance between an electrode and the tissue. The method further comprises calculating an index responsive to the at least one value of the at least one complex impedance component. The calculating index is indicative of a likelihood of barotrauma occurring in the tissue.Type: ApplicationFiled: December 10, 2010Publication date: June 16, 2011Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn E. Clark, Jeremy D. Dando, Christopher J. Geurkink, Rohan Lathia, Harry A. Puryear, Valtino X. Afonso, Saurav Paul
-
Publication number: 20110118727Abstract: A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU) configured to acquire magnitudes for a component of a complex impedance between an electrode and tissue, and the power applied to the tissue during lesion formation. The ECU is configured to calculate a value responsive to the complex impedance component and the power. The value is indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, or a predicted tissue temperature. The method includes acquiring magnitudes for a component of a complex impedance between an electrode and tissue and the power applied during lesion formation. The method includes calculating a value responsive to the complex impedance component and the power, the value being indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, and/or a predicted tissue temperature.Type: ApplicationFiled: November 16, 2010Publication date: May 19, 2011Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn E. Clark, Jeremy D. Dando, Christopher J. Geurkink, Harry A. Puryear, Saurav Paul