Patents by Inventor Lynn M. Purdy

Lynn M. Purdy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9682253
    Abstract: An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 20, 2017
    Assignee: Varian Medical Systems, Inc.
    Inventors: Eric Meier, Timothy P. Mate, J. Nelson Wright, Steven C. Dimmer, Lynn M. Purdy
  • Patent number: 9616248
    Abstract: An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 11, 2017
    Assignee: Varian Medical Systems, Inc.
    Inventors: Eric Meier, Timothy P. Mate, J. Nelson Wright, Steven C. Dimmer, Lynn M. Purdy
  • Publication number: 20130172657
    Abstract: An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy.
    Type: Application
    Filed: July 26, 2012
    Publication date: July 4, 2013
    Applicant: Varian Medical Sytems, Inc.
    Inventors: Eric Meier, Timothy P. Mate, J. Nelson Wright, Steven C. Dimmer, Lynn M. Purdy
  • Patent number: 8340742
    Abstract: An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: December 25, 2012
    Assignee: Varian Medical Systems, Inc.
    Inventors: Eric Meier, Timothy P. Mate, J. Nelson Wright, Steven C. Dimmer, Lynn M. Purdy
  • Patent number: 8244330
    Abstract: An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: August 14, 2012
    Assignee: Varian Medical Systems, Inc.
    Inventors: Eric Meier, Timothy P. Mate, J. Nelson Wright, Steven C. Dimmer, Lynn M. Purdy
  • Publication number: 20090216115
    Abstract: Apparatus and methods for anchoring implanted wireless markers in a patient's body to accurately locate a small target within a soft tissue region. One embodiment of the invention comprises a casing, a transponder partially encased in the casing, and an anchor protruding from the casing. The anchor can either be an extension of the casing or a separate component partly embedded in the casing. Different embodiments of the invention may be well suited for percutaneous implantation and/or surgical implantation.
    Type: Application
    Filed: July 25, 2005
    Publication date: August 27, 2009
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Keith D. Seiler, Eric Hadford, Lynn M. Purdy
  • Patent number: 5553620
    Abstract: The use of menu branches associated with a patient's potential condition aids in the accuracy and efficiency of an ultrasound measurement system. The menu branches use a set of suggested measurements to produce results that allow for the evaluation of the potential condition of the patient. The set of suggested measurements can be less than all of the possible measurements for the calculation package. The user no longer has to skip through a large menu full of irrelevant measurement selections. For this reason, the user is less likely to skip pertinent measurements or do time consuming measurements which are irrelevant to evaluate the potential condition. The time savings is important since the user of the ultrasound measurement system may be under severe time pressure.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: September 10, 1996
    Assignee: Acuson Corporation
    Inventors: A. Rebecca Snider, Richard M. Bennett, Laurence J. McCabe, Peter J. Magsig, Kane L. Ng, Lynn M. Purdy, Joseph W. Ruffles