Patents by Inventor Lynne Canne

Lynne Canne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8889664
    Abstract: The present invention comprises small molecule inhibitors of phosphatidylinositol 3-kinase (PI3K), which is associated with a number of malignancies such as ovarian cancer, cervical cancer, breast cancer, colon cancer, rectal cancer, and glioblastomas, among others. Accordingly, the compounds of the present invention are useful for treating, preventing, and/or inhibiting these diseases.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 18, 2014
    Assignee: Exelixis, Inc.
    Inventors: William Bajjalieh, Lynne Canne Bannen, S. David Brown, Patrick Kearney, Morrison Mac, Charles K. Marlowe, John M. Nuss, Zerom Tesfai, Yong Wang, Wei Xu
  • Publication number: 20140206865
    Abstract: The present invention provides compounds useful for inhibiting the ADAM-10 protein, with selectivity versus MMP-1. Such compounds are useful in the in vitro study of the role of ADAM-10 (and its inhibition) in biological processes. The present invention also comprises pharmaceutical compositions comprising one or more ADAM-10 inhibitors according to the invention in combination with a pharmaceutically acceptable carrier. Such compositions are useful for the treatment of cancer, arthritis, and diseases related to angiogenesis. Correspondingly, the invention also comprises methods of treating forms of cancer, arthritis, and diseases related to angiogenesis in which ADAM-10 plays a critical role.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: SYMPHONY EVOLUTION, INC.
    Inventors: Lynne Canne Bannen, Erick Wang Co, Vasu Jammalamadaka, John M. Nuss, Moon Hwan Kim, Donna Tra Le, Amy Lew Tsuhako, Morrison B. Mac, Shumeye Mamo, Zhaoyang Wen, Wei Xu, Richard George Khoury
  • Publication number: 20140155396
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: June 27, 2013
    Publication date: June 5, 2014
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wei Xu
  • Publication number: 20140155378
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: May 7, 2013
    Publication date: June 5, 2014
    Applicant: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-ming Chan, Jeff Chen, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wei Xu
  • Publication number: 20130252940
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: May 7, 2013
    Publication date: September 26, 2013
    Applicant: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-ming Chan, Jeff Chen, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wei Xu
  • Patent number: 8497284
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 30, 2013
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wei Xu
  • Patent number: 8476298
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 2, 2013
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrisson B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Publication number: 20130144056
    Abstract: The present invention provides compounds useful for inhibiting the ADAM-10 protein, with selectivity versus MMP-1. Such compounds are useful in the in vitro study of the role of ADAM-10 (and its inhibition) in biological processes. The present invention also comprises pharmaceutical compositions comprising one or more ADAM-10 inhibitors according to the invention in combination with a pharmaceutically acceptable carrier. Such compositions are useful for the treatment of cancer, arthritis, and diseases related to angiogenesis. Correspondingly, the invention also comprises methods of treating forms of cancer, arthritis, and diseases related to angiogenesis in which ADAM-10 plays a critical role.
    Type: Application
    Filed: July 3, 2012
    Publication date: June 6, 2013
    Applicant: SYMPHONY EVOLUTION, INC.
    Inventors: Lynne Canne Bannen, Erick W. Co, Vasu Jammalamadaka, John M. Nuss, Moon Hwan Kim, Donna Tra Le, Amy Lew Tsuhako, Morrison B. Mac, Shumeye Mamo, Zhaoyang Wen, Wei Xu, Richard George Khoury
  • Patent number: 8367667
    Abstract: Compounds, compositions and methods for modulating the activity of receptors are provided. In particular compounds and compositions are provided for modulating the activity of receptors and for the treatment, prevention, or amelioration of one or more symptoms of disease or disorder directly or indirectly related to the activity of the receptors.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: February 5, 2013
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Jeff Chen, Lisa Esther Dalrymple, Brenton T Flatt, Timothy Patrick Forsyth, Xiao-Hui Gu, Morrison B Mac, Larry W Mann, Grace Mann, Richard Martin, Raju Mohan, Brett Murphy, Michael Charles Nyman, William C Stevens, Tie-Lin Wang, Yong Wang, Jason H Wu
  • Publication number: 20120184523
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 19, 2012
    Applicant: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takbuchi, Yong Wang, Wei Xu
  • Patent number: 8178532
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: May 15, 2012
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Timothy Patrick Forsyth, Richard George Khoury, James William Leahy, Morrisson B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Yong Wang, Wie Xu
  • Publication number: 20120071653
    Abstract: The present invention provides compounds useful for inhibiting the ADAM-10 protein, with selectivity versus MMP-1. Such compounds are useful in the in vitro study of the role of ADAM-10 (and its inhibition) in biological processes. The present invention also comprises pharmaceutical compositions comprising one or more ADAM-10 inhibitors according to the invention in combination with a pharmaceutically acceptable carrier. Such compositions are useful for the treatment of cancer, arthritis, and diseases related to angiogenesis. Correspondingly, the invention also comprises methods of treating forms of cancer, arthritis, and diseases related to angiogenesis in which ADAM-10 plays a critical role.
    Type: Application
    Filed: June 23, 2011
    Publication date: March 22, 2012
    Applicant: SYMPHONY EVOLUTION, INC.
    Inventors: Lynne Canne Bannen, Erick W. Co, Vasu Jammalamadaka, John M. Nuss, Moon Hwan Kim, Donna Tra Le, Amy Lew, Morrison B. Mac, Shumeye Mamo, Zhaoyang Wen, Wei Xu, Richard George Khoury
  • Publication number: 20120070368
    Abstract: Disclosed are methods of treating cancer by administering a compound of Formula I, or a pharmaceutically acceptable salt thereof, in combination with gemcitabine (GEM), or a pharmaceutically acceptable salt thereof, and optionally one or more additional treatments, wherein: R1 is halo; R2 is halo; R3 is (C1-C6)alkyl; R4 is (C1-C6)alkyl; and Q is CH or N.
    Type: Application
    Filed: April 14, 2011
    Publication date: March 22, 2012
    Applicant: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Timothy Patrick Forsyth, Richard George Khoury, James William Leahy, Morrison B. Mac, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Yong Wang, Wei Xu, Diane Simeone
  • Publication number: 20120022065
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 26, 2012
    Applicant: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrison B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wei Xu
  • Patent number: 8076338
    Abstract: The present invention relates to compounds of the Formula (I) and (II) wherein R, R21, R25-R33, m, n, X21-X23, and Q1 are defined herein. The compounds modulate protein kinase enzymatic activity to modulate cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. Compounds of the invention inhibit, regulate and/or modulate kinases, particularly p70S6 and/or Akt kinases. Methods of using and preparing the compounds, and pharmaceutical compositions thereof, to treat kinase-dependent diseases and conditions are also an aspect of the invention.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: December 13, 2011
    Assignee: Exelixis, Inc.
    Inventors: Neel K. Anand, Charles M. Blazey, Owen Joseph Bowles, Joerg Bussenius, Lynne Canne Bannen, Diva Sze-Ming Chan, Baili Chen, Erick Wang Co, Simona Costanzo, Steven Charles Defina, Larisa Dubenko, Maurizio Franzini, Ping Huang, Vasu Jammalamadaka, Richard George Khoury, Moon Hwan Kim, Rhett Ronald Klein, Donna Tra Le, Morrison B. Mac, John M. Nuss, Jason Jevious Parks, Kenneth D. Rice, Tsze H. Tsang, Amy Lew Tsuhako, Yong Wang, Wei Xu
  • Publication number: 20110301128
    Abstract: Compounds, compositions and methods for modulating the activity of receptors are provided. In particular compounds and compositions are provided for modulating the activity of receptors and for the treatment, prevention, or amelioration of one or more symptoms of disease or disorder directly or indirectly related to the activity of the receptors.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 8, 2011
    Applicant: EXELIXIS, INC.
    Inventors: Lynne Canne Bannen, Jeff Chen, Lisa Esther Dalrymple, Brenton T. Flatt, Timothy Patrick Forsyth, Xiao-Hui Gu, Morrison B. Mac, Larry W. Mann, Grace Mann, Richard Martin, Raju Mohan, Brett Murphy, Michael Charles Nyman, William C. Stevens, Tie-Lin Wang, Yong Wang, Jason H. Wu
  • Patent number: 8067436
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: November 29, 2011
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Diva Sze-Ming Chan, Jeff Chen, Lisa Esther Dalrymple, Timothy Patrick Forsyth, Tai Phat Huynh, Vasu Jammalamadaka, Richard George Khoury, James William Leahy, Morrisson B. Mac, Grace Mann, Larry W. Mann, John M. Nuss, Jason Jevious Parks, Craig Stacy Takeuchi, Yong Wang, Wie Xu
  • Patent number: 8026237
    Abstract: Compounds, compositions and methods for modulating the activity of receptors are provided. In particular compounds and compositions are provided for modulating the activity of receptors and for the treatment, prevention, or amelioration of one or more symptoms of disease or disorder directly or indirectly related to the activity of the receptors.
    Type: Grant
    Filed: July 30, 2005
    Date of Patent: September 27, 2011
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, Jeff Chen, Lisa Esther Dalrymple, Brenton T Flatt, Timothy Patrick Forsyth, Xiao-Hui Gu, Morrison B Mac, Larry W Mann, Grace Mann, Richard Martin, Raju Mohan, Brett Murphy, Michael Charles Nyman, William C Stevens, Tie-Lin Wang, Yong Wang, Jason H Wu
  • Patent number: 8013156
    Abstract: The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. Compounds of the invention inhibit, regulate and/or modulate kinases, particularly Tie-2. Methods of using the compounds and pharmaceutical compositions thereof to treat kinase-dependent diseases and conditions are also an aspect of the invention.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: September 6, 2011
    Assignee: Exelixis, Inc.
    Inventors: Lynne Canne Bannen, S. David Brown, Wei Cheng, Vasu Jammalamadaka, John M. Nuss, Morrison B. Mac, Jason Jevious Parks, Matthew A. Williams, Wei Xu, Atwood Kim Cheung, Lisa Esther Dalrymple, Sergey Epshteyn, Mohamed Abdulkader Ibrahim, James William Leahy, Gary Lee Lewis, Robin Tammie Noguchi, Larry Wayne Mann, Brian Hugh Ridgway, Joan C. Sangalang, Kevin Luke Schnepp, Xian Shi, Richard George Khoury
  • Publication number: 20110207712
    Abstract: The present invention comprises small molecule inhibitors of phosphatidylinositol 3-kinase (PI3K), which is associated with a number of malignancies such as ovarian cancer, cervical cancer, breast cancer, colon cancer, rectal cancer, and glioblastomas, among others. Accordingly, the compounds of the present invention are useful for treating, preventing, and/or inhibiting these diseases.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 25, 2011
    Applicant: Exelixis, Inc.
    Inventors: William Bajjalieh, Lynne Canne Bannen, S. David Brown, Patrick Kearney, Morrison Mac, Charles K. Marlowe, John M. Nuss, Zerom Tesfai, Yong Wang, Wei Xu