Patents by Inventor M. Cyrus Maher

M. Cyrus Maher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132878
    Abstract: Diagnostic devices and methods are provided for screening for a disease condition, including a cancer condition or a mendelian disease. The diagnostic devices allow for in vivo contact of cell-free nucleic acids or circulating tumor cells. The diagnostic device has a needle with a body and a detection reaction module attached to the body.
    Type: Application
    Filed: February 22, 2023
    Publication date: April 25, 2024
    Applicant: GRAIL, LLC
    Inventor: M. Cyrus MAHER
  • Patent number: 11929148
    Abstract: Systems and methods for determining a cancer class of a subject are provided in which a plurality of sequence reads, in electronic form, are obtained from a biological sample of the subject. The sample comprises a plurality of cell-free DNA molecules including respective DNA molecules longer than a threshold length of less than 160 nucleotides. The plurality of sequence reads excludes sequence reads of cell-free DNA molecules in the plurality of cell-free DNA molecules longer than the threshold length. The plurality of sequence reads is used to identify a relative copy number at each respective genomic location in a plurality of genomic locations in the genome of the subject. The genetic information about the subject obtained from the sample and the genetic information consisting of the identification of the relative copy number at each respective genomic location, is applied to a classifier that determines the cancer class of the subject.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: March 12, 2024
    Assignee: GRAIL, LLC
    Inventors: Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef
  • Publication number: 20240062849
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Application
    Filed: August 31, 2023
    Publication date: February 22, 2024
    Applicant: GRAIL, LLC
    Inventors: Virgil NICULA, Anton VALOUEV, Darya FILIPPOVA, Matthew H. LARSON, M. Cyrus MAHER, Monica Portela dos Santos Pimentel, Robert Abe Paine CALEF, Collin MELTON
  • Patent number: 11869661
    Abstract: Systems and methods for classifier training are provided. A first dataset is obtained that comprises, for each first subject, a corresponding plurality of bin values, each for a bin in a plurality of bins, and subject cancer condition. A feature extraction technique is applied to the first dataset thereby obtaining feature extraction functions, each of which is an independent linear or nonlinear function of bin values of the bins. A second dataset is obtained comprising, for each second subject, a corresponding plurality of bin values, each for a bin in the plurality of bins and subject cancer condition. The plurality of bin values of each corresponding subject in the second plurality are projected onto the respective feature extraction functions, thereby forming a transformed second dataset comprising feature values for each subject. The transformed second dataset and subject cancer condition serves to train a classifier on the cancer condition set.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 9, 2024
    Assignee: GRAIL, LLC
    Inventor: M. Cyrus Maher
  • Patent number: 11783915
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: October 10, 2023
    Assignee: GRAIL, LLC
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Patent number: 11680261
    Abstract: Diagnostic devices and methods are provided for screening for a disease condition, including a cancer condition or a mendelian disease. The diagnostic devices allow for in vivo contact of cell-free nucleic acids or circulating tumor cells. The diagnostic device has a needle with a body and a detection reaction module attached to the body.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 20, 2023
    Assignee: GRAIL, INC.
    Inventor: M. Cyrus Maher
  • Publication number: 20230170048
    Abstract: Technical solutions for classifying patients with respect to multiple cancer classes are provided. The classification can be done using cell-free whole genome sequencing information from subjects. A reference set of subjects is used to train classifiers to recognize genomic markers that distinguish such cancer classes. The classifier training includes dividing the reference genome into a set of non-overlapping bins, applying a dimensionality reduction method to obtain a feature set, and using the feature set to train classifiers. For subjects with unknown cancer class, the trained classifiers provide probabilities or likelihoods that the subject has a respective cancer class for each cancer in a set of cancer classes. The present disclosure thus describes methods to improve the screening and detection of cancer class from among several cancer classes. This serves to facilitate early and appropriate treatment for subjects afflicted with cancer.
    Type: Application
    Filed: January 6, 2023
    Publication date: June 1, 2023
    Applicant: Grail, LLC
    Inventors: M. Cyrus MAHER, Anton VALOUEV, Darya FILIPPOVA, Virgil NICULA, Karthik JAGADEESH, Oliver Claude VENN, Samuel S. GROSS, John F. BEAUSANG, Robert Abe Paine CALEF
  • Publication number: 20230045925
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 16, 2023
    Applicant: GRAIL, LLC
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Patent number: 11581062
    Abstract: Technical solutions for classifying patients with respect to multiple cancer classes are provided. The classification can be done using cell-free whole genome sequencing information from subjects. A reference set of subjects is used to train classifiers to recognize genomic markers that distinguish such cancer classes. The classifier training includes dividing the reference genome into a set of non-overlapping bins, applying a dimensionality reduction method to obtain a feature set, and using the feature set to train classifiers. For subjects with unknown cancer class, the trained classifiers provide probabilities or likelihoods that the subject has a respective cancer class for each cancer in a set of cancer classes. The present disclosure thus describes methods to improve the screening and detection of cancer class from among several cancer classes. This serves to facilitate early and appropriate treatment for subjects afflicted with cancer.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: February 14, 2023
    Assignee: GRAIL, LLC
    Inventors: M. Cyrus Maher, Anton Valouev, Darya Filippova, Virgil Nicula, Karthik Jagadeesh, Oliver Claude Venn, Samuel S. Gross, John F. Beausang, Robert Abe Paine Calef
  • Patent number: 11482303
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: October 25, 2022
    Assignee: GRAIL, LLC
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Publication number: 20220119890
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel to detect cancer and particular types of cancer.
    Type: Application
    Filed: July 23, 2021
    Publication date: April 21, 2022
    Inventors: Oliver Claude Venn, Alexander P. Fields, Samuel S. Gross, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Onur Sakarya, M. Cyrus Maher, Arash Jamshidi
  • Publication number: 20220098672
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel for detection of cancer tissue of origin (e.g., types of cancer).
    Type: Application
    Filed: August 4, 2021
    Publication date: March 31, 2022
    Inventors: Oliver Claude Venn, Alexander P. Fields, Samuel S. Gross, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Onur Sakarya, M. Cyrus Maher, Arash Jamshidi
  • Publication number: 20220090207
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel to detect cancer and particular types of cancer.
    Type: Application
    Filed: July 23, 2021
    Publication date: March 24, 2022
    Inventors: Oliver Claude Venn, Alexander P. Fields, Samuel S. Gross, Qinwen Liu, Jan Schellenberger, Joerg Bredno, John F. Beausang, Seyedmehdi Shojaee, Onur Sakarya, M. Cyrus Maher, Arash Jamshidi
  • Publication number: 20210395841
    Abstract: Systems and methods described herein include detecting a presence or absence of HPV in a biological sample having cell-free nucleic acids from a subject and potentially cell-free nucleic acids from an HPV strain. Based on a detection of HPV viral nucleic acids in the biological sample, an HPV-based multiclass classifier that predicts a score for each HPV-associated cancer type is applied. The HPV-based multiclass classifier is trained on a training set of HPV-positive cancer samples. An HPV-associated cancer associated with the biological sample is determined based on the scores predicted by the HPV multiclass classifier.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Applicant: GRAIL, Inc.
    Inventors: Robert Abe Paine Calef, M. Cyrus Maher, John F. Beausang, Joerg Bredno, Oliver Claude Venn, Alexander P. Fields, Arash Jamshidi
  • Publication number: 20210310075
    Abstract: Methods and systems for detecting cancer and/or determining a cancer tissue of origin are disclosed. A multiclass cancer classifier is disclosed that is trained with a plurality of biological samples containing cfDNA fragments and at least one synthetic training sample generated from the biological samples. The analytics system generates the synthetic training sample by sampling fragments from a training sample labeled as cancer and sampling fragments from another training sample labeled as non-cancer. The sampling probability is determined based on a limit of detection of the cancer classifier, e.g., in order to generate synthetic training samples with cancer tumor fraction proximate to the limit of detection.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 7, 2021
    Inventors: M. Cyrus Maher, Samuel S. Gross, Joshua Newman, Joerg Bredno, Ognjen Nikolic
  • Publication number: 20210166813
    Abstract: Systems and methods are provided for determining whether a test subject has a disease condition. In one aspect, the method includes determining at least first and second genotypic data constructs for a test subject, formed from data collected from first and second sample from the subject, respectively, at different times. The first and second genotypic data constructs are inputted into a model for the disease condition, thereby generating first and second model score sets for the disease condition, respectively. A test delta score set is determined based on a difference between the first and second model score sets. The test delta score set is evaluated against a plurality of reference delta score sets, to determine the disease condition of the test subject, where each reference delta score set is for a respective reference subject in a plurality of reference subjects.
    Type: Application
    Filed: November 25, 2020
    Publication date: June 3, 2021
    Inventors: M. Cyrus Maher, Alex Aravanis, Angela Lai, Oliver Claude Venn, Richard Rava, Jing Xiang, Joseph Marcus
  • Publication number: 20210115520
    Abstract: Methods for screening for a cancer condition in a subject are provided. A biological sample from the subject is obtained. The sample comprises cell-free nucleic acid from the subject and potentially cell-free nucleic acid from a pathogen in a set of pathogens. The cell-free nucleic acid in the biological sample is sequenced to generate a plurality of sequence reads from the subject. A determination is made, for each respective pathogen in the set of pathogens, of a corresponding amount of the plurality of sequence reads that map to a sequence in a pathogen target reference for the respective pathogen, thereby obtaining a set of amounts of sequence reads, each respective amount of sequence reads in the set of amounts of sequence reads for a corresponding pathogen in the set of pathogens. The set of amounts of sequence reads is used to determine whether the subject has the cancer condition.
    Type: Application
    Filed: April 24, 2019
    Publication date: April 22, 2021
    Inventors: M. Cyrus Maher, Anton Valouev, Seyedmehdi Shojaee, Oliver Claude Venn
  • Publication number: 20210025011
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel for diagnosis of cancer.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Inventors: Samuel S. Gross, Hamid Amini, Arash Jamshidi, Seyedmehdi Shojaee, Srinka Ghosh, Rongsu Qi, M. Cyrus Maher, Alexander P. Fields, Oliver Claude Venn
  • Publication number: 20210017609
    Abstract: The present description provides a cancer assay panel for targeted detection of cancer-specific methylation patterns. Further provided herein includes methods of designing, making, and using the cancer assay panel for diagnosis of cancer.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Samuel S. Gross, Hamid Amini, Arash Jamshidi, Seyedmehdi Shojaee, Srinka Ghosh, Rongsu Qi, M. Cyrus Maher, Alexander P. Fields, Oliver Claude Venn
  • Publication number: 20200372296
    Abstract: Systems and methods for classifier training are provided. A first dataset is obtained that comprises, for each first subject, a corresponding plurality of bin values, each for a bin in a plurality of bins, and subject cancer condition. A feature extraction technique is applied to the first dataset thereby obtaining feature extraction functions, each of which is an independent linear or nonlinear function of bin values of the bins. A second dataset is obtained comprising, for each second subj ect, a corresponding plurality of bin values, each for a bin in the plurality of bins and subject cancer condition. The plurality of bin values of each corresponding subject in the second plurality are projected onto the respective feature extraction functions, thereby forming a transformed second dataset comprising feature values for each subject. The transformed second dataset and subject cancer condition serves to train a classifier on the cancer condition set.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventor: M. Cyrus MAHER