Patents by Inventor M. Edward Womble

M. Edward Womble has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100165324
    Abstract: Spectroscopic systems and methods are disclosed for determining levels of at least one analyte in blood undergoing hemodialysis. In one aspect, the invention employs Raman spectroscopy to monitor and/or control hemodialysis. In one embodiment, the system uses a laser light directed to circulating blood from a patient undergoing dialysis to make Raman spectral measurements. For example, the laser light can be directed into a segment of the dialysis tubing. The system can utilize unique Raman spectroscopic signature of one or more analytes, e.g., urea, to identify and quantify such analytes against a whole blood background. Based on the spectral response, the concentration of the analytes can be monitored and/or used to control hemodialysis.
    Type: Application
    Filed: December 22, 2009
    Publication date: July 1, 2010
    Applicant: Prescient Medical, Inc.
    Inventors: M. Edward Womble, Richard H. Clarke
  • Patent number: 7688440
    Abstract: The invention provides diagnostic apparatuses that are advantageously adapted for the Raman spectroscopic analysis of fluid samples, such as biological fluid samples, deposited on test strip substrates. The tests strips may be include a surface-enhanced Raman spectroscopy (SERS) surface for deposition and analysis of a sample and/or may be lateral flow binding assay type test strips.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: March 30, 2010
    Assignee: Prescient Medical, Inc.
    Inventors: Richard H. Clarke, M. Edward Womble
  • Patent number: 7651851
    Abstract: Methods and apparatus for in vitro detection of an analyte in a body fluid sample using low resolution Raman spectroscopy are disclosed. The body fluid analyzer includes a disposable strip for receiving a sample of body fluid on a target region, the target region including gold sol-gel to provide surface enhanced Raman scattering. A light source irradiates the target region to produce a Raman spectrum consisting of scattered electromagnetic radiation that is separated into different wavelength components by a dispersion element. A detection array detects at least some of the wavelength components of the scattered light and provides data to a processor for processing the data. The results of the processed data are displayed on a screen to inform a user about an analyte within the body fluid sample.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: January 26, 2010
    Assignee: Prescient Medical, Inc.
    Inventors: Richard H. Clarke, M. Edward Womble
  • Patent number: 7524671
    Abstract: Methods and apparatus for in vitro detection of an analyte in a blood sample using low resolution Raman spectroscopy are disclosed. The blood analyzer includes a disposable strip for receiving a sample of blood on a target region, the target region including gold sol-gel to provide surface enhanced Raman scattering. A light source irradiates the target region to produce a Raman spectrum consisting of scattered electromagnetic radiation that is separated into different wavelength components by a dispersion element. A detection array detects a least some of the wavelength components of the scattered light and provides data to a processor for processing the data. The results of the processed data are displayed on a screen to inform a user about an analyte within the blood sample.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: April 28, 2009
    Assignee: Prescient Medical, Inc.
    Inventors: Richard H. Clarke, M. Edward Womble
  • Publication number: 20080158544
    Abstract: Spectroscopic systems and methods are disclosed for determining levels of at least one analyte in blood undergoing hemodialysis. In one aspect, the invention employs Raman spectroscopy to monitor and/or control hemodialysis. In one embodiment, the system uses a laser light directed to circulating blood from a patient undergoing dialysis to make Raman spectral measurements. For example, the laser light can be directed into a segment of the dialysis tubing. The system can utilize unique Raman spectroscopic signature of one or more analytes, e.g., urea, to identify and quantify such analytes against a whole blood background. Based on the spectral response, the concentration of the analytes can be monitored and/or used to control hemodialysis.
    Type: Application
    Filed: February 5, 2008
    Publication date: July 3, 2008
    Applicant: Prescient Medical, Inc.
    Inventors: M. Edward Womble, Richard H. Clarke
  • Patent number: 7326576
    Abstract: Spectroscopic systems and methods are disclosed for determining levels of at least one analyte in blood undergoing hemodialysis. In one aspect, the invention employs Raman spectroscopy to monitor and/or control hemodialysis. In one embodiment, the system uses a laser light directed to circulating blood from a patient undergoing dialysis to make Raman spectral measurements. For example, the laser light can be directed into a segment of the dialysis tubing. The system can utilize unique Raman spectroscopic signature of one or more analytes, e.g., urea, to identify and quantify such analytes against a whole blood background. Based on the spectral response, the concentration of the analytes can be monitored and/or used to control hemodialysis.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: February 5, 2008
    Assignee: Prescient Medical, Inc.
    Inventors: M. Edward Womble, Richard H. Clarke
  • Patent number: 6897951
    Abstract: Raman spectroscopy probe assemblies are disclosed for use with portable and/or handheld analyzers. The probes are also adaptable to sample liquids, and/or powders, tablets and/or other solids and are capable of withstanding harsh environmental conditions. The probes include an optical head assembly, associated optical fibers and replaceable sampling tubes. In one aspect of the invention, a simple orthogonal optical head assembly is disclosed that does not require collinear optical paths. The orthogonal arrangement of input and captured light paths also reduces the need for precise alignment of the optical components. The orthogonal optical head assemblies of the present invention are well suited to accommodate the shutoff mechanisms of the present invention. In another aspect of the invention, sampling tubes, and replaceable end caps for such tubes, are disclosed that facilitate hand measurements of substances.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: May 24, 2005
    Assignee: Raman Systems, Inc.
    Inventors: M. Edward Womble, Richard H. Clarke
  • Publication number: 20040204634
    Abstract: Spectroscopic systems and methods are disclosed for determining levels of at least one analyte in blood undergoing hemodialysis. In one aspect, the invention employs Raman spectroscopy to monitor and/or control hemodialysis. In one embodiment, the system uses a laser light directed to circulating blood from a patient undergoing dialysis to make Raman spectral measurements. For example, the laser light can be directed into a segment of the dialysis tubing. The system can utilize unique Raman spectroscopic signature of one or more analytes, e.g., urea, to identify and quantify such analytes against a whole blood background. Based on the spectral response, the concentration of the analytes can be monitored and/or used to control hemodialysis.
    Type: Application
    Filed: April 9, 2003
    Publication date: October 14, 2004
    Inventors: M. Edward Womble, Richard H. Clarke
  • Publication number: 20040174520
    Abstract: The invention is directed to a method of making and using a porous solid matrix for trapping metal nanoparticles for use in detection, identification and quantification of trace levels of water contaminants using surface enhanced Raman scattering (SERS). The metal nanoparticles are polydispersed in the porous solid matrix, sufficiently separated to prevent conduction, in creating a broad area of excited electrons in response to applied radiation. In one aspect, the metal nanoparticles may be derived from gold, silver or platinum. In another aspect, the porous solid matrix is a sol-gel embedded with a polydispersion of metal for use in SERS detection. This metal nanoparticle substrate can be used on-site, is highly sensitive and easy to use for an immediate and accurate result.
    Type: Application
    Filed: January 23, 2004
    Publication date: September 9, 2004
    Inventors: W Ranjith Premasiri, Richard H Clarke, M Edward Womble
  • Publication number: 20040160601
    Abstract: Raman spectroscopy probe assemblies are disclosed for use with portable and/or handheld analyzers. The probes are also adaptable to sample liquids, and/or powders, tablets and/or other solids and are capable of withstanding harsh environmental conditions. The probes include an optical head assembly, associated optical fibers and replaceable sampling tubes. Safety shut-off mechanisms are provided to reduce the risk of inadvertent exposure to radiation. In one embodiment, the shut-off switch is a spring-biased shutter that is opened by a solenoid only under predefined proper operating conditions. In another aspect of the invention, a simple orthogonal optical head assembly is disclosed that does not require collinear optical paths. The orthogonal arrangement of input and captured light paths also reduces the need for precise alignment of the optical components. The orthogonal optical head assemblies of the present invention are well suited to accommodate the shutoff mechanisms of the present invention.
    Type: Application
    Filed: February 14, 2003
    Publication date: August 19, 2004
    Inventors: M. Edward Womble, Richard H. Clarke
  • Patent number: 5982484
    Abstract: The present invention provides an apparatus for measuring a property of a sample using low resolution Raman spectroscopy. The apparatus includes a multi-mode laser element, a wavelength dispersion element, a detector, and a processor. The multi-mode laser element irradiates a sample with laser radiation to produce a Raman spectrum. The collection element collects the radiation scattered from the molecules of the sample and transmits the scattered radiation to the dispersion element. The dispersion element disperses the scattered radiation into different wavelength components. The detection array detects the different wavelength components. A processor processes data from the detector array to identify a constituent or to measure a property of the sample. The apparatus preferably has a resolution of between 30 cm.sup.-1 and 50 cm.sup.-1. The resolution of the apparatus being determined in part by the spectral full width at half maximum of the multi-mode laser, and, in part, by the dispersion element.
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: November 9, 1999
    Inventors: Richard H. Clarke, M. Edward Womble