Patents by Inventor M.J. Yanjarappa

M.J. Yanjarappa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9943782
    Abstract: Embodiments of the present disclosure include a method of separating an oil-in-water emulsion formed during crude oil production into a water phase and an oil phase that includes adding 1 part-per-million (ppm) to 10000 ppm of a cationic vinyl imidazolium-based copolymer to the oil-in-water emulsion, based on the total volume of the oil-in-water emulsion, to form a water phase and an oil phase, and separating the water phase from the oil phase.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: April 17, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: M. J. Yanjarappa, Cecile Boyer, Stephen M. Hoyles, Michael K. Poindexter
  • Patent number: 9758397
    Abstract: Embodiments of the present disclosure include a method of separating an oil-in-water emulsion formed during crude oil production into a water phase and an oil phase that includes adding 1 part-per-million (ppm) to 10000 ppm of an N-vinylpyrrolidone based cationic copolymer to the oil-in-water emulsion, based on the total volume of the oil-in-water emulsion, to form a water phase and an oil phase, and separating the water phase from the oil phase.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: September 12, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: M. J. Yanjarappa, Cecile Boyer, Stephen M. Hoyles, Michael K. Poindexter
  • Patent number: 9370735
    Abstract: A composition comprising a mesoporous silica having grafted therewith an ionic liquid to form a mesoporous silica composition offers desirable levels of functionality, sorption, specific surface functionalization, and selectivity for polar gas/non-polar gas and olefin/paraffin separations. One particular embodiment employs silylated 3,3?-(2,2-bis(hydroxymethyl)propane-1,3-diyl)bis(1-methyl-1H-imidazol-3-ium)bis-((trifluoromethyl-sulfonyl)amide as the ionic liquid. The mesoporous silica composition may be configured as, for example, a membrane.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: June 21, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Deepak Akolekar, Victor J. Sussman, M J. Yanjarappa, Phani Kiran Bollapragada, Scott T. Matteucci, Peter N. Nickias
  • Publication number: 20150231529
    Abstract: A composition comprising a mesoporous silica having grafted therewith an ionic liquid to form a mesoporous silica composition offers desirable levels of functionality, sorption, specific surface functionalization, and selectivity for polar gas/non-polar gas and olefin/paraffin separations. One particular embodiment employs silylated 3,3?-(2,2-bis(hydroxymethyl)propane-1,3-diyl)bis(1-methyl-1H-imidazol-3-ium)bis-((trifluoromethyl-sulfonyl)amide as the ionic liquid. The mesoporous silica composition may be configured as, for example, a membrane.
    Type: Application
    Filed: September 23, 2013
    Publication date: August 20, 2015
    Inventors: Deepak Akolekar, Victor J. Sussman, M. J. Yanjarappa, Phani Kiran Bollapragada, Scott T. Matteucci, Peter N. Nickias
  • Publication number: 20150166378
    Abstract: Embodiments of the present disclosure include a method of separating an oil-in-water emulsion formed during crude oil production into a water phase and an oil phase that includes adding 1 part-per-million (ppm) to 10000 ppm of an N-vinylpyrrolidone based cationic copolymer to the oil-in-water emulsion, based on the total volume of the oil-in-water emulsion, to form a water phase and an oil phase, and separating the water phase from the oil phase.
    Type: Application
    Filed: July 30, 2013
    Publication date: June 18, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: M.J. Yanjarappa, Cecile Boyer, Stephen M. Hoyles, Michael K. Poindexter
  • Publication number: 20150166377
    Abstract: Embodiments of the present disclosure include a method of separating an oil-in-water emulsion formed during crude oil production into a water phase and an oil phase that includes adding 1 part-per-million (ppm) to 10000 ppm of a cationic vinyl imidazolium-based copolymer to the oil-in-water emulsion, based on the total volume of the oil-in-water emulsion, to form a water phase and an oil phase, and separating the water phase from the oil phase.
    Type: Application
    Filed: July 30, 2013
    Publication date: June 18, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: M.J. Yanjarappa, Cecile Boyer, Stephen M. Hoyles, Michael K. Poindexter