Patents by Inventor M. Katie Hailer

M. Katie Hailer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220323928
    Abstract: Fresh water contamination by heavy metals results from a variety of sources and can be damaging to wildlife, alter landscapes, and impact human health. metals removal form water sources is desirable for improving water quality and preventing adverse effects, but also for metals collection and recycling. Adsorption is a desirable metals extraction technique due to economic feasibility. Nanoscale materials exhibit high surface-area-to-volume ratio that lends to high adsorption and reactivity, making them ideal candidates for adsorptive metals extraction processes. Despite these properties, nanomaterials have elicited safety concerns. The extraordinarily small dimensions of these materials allow them to maneuver biological systems, tissues, and even cells, and combined with high reactivity, this translocation can result in toxic effects. It is therefore imperative that safety of nanomaterials for metals extraction be evaluated in addition to adsorptive properties.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 13, 2022
    Inventors: Jessica M. Andriolo, M. Katie Hailer, Jack L. Skinner, Jerome P. Downey, David L. Hutchins, Teagan Leitzke
  • Patent number: 11191721
    Abstract: Disclosed herein is a particle delivery system comprising electrospun nanofiber comprised of coaxial fiber with a microfluidic core. Iron-doped apatite nanoparticles (IDANPs) have demonstrated a unique influence over phage killing of bacteria, whereby, IDANP-exposed bacterial cultures experience 2× the bacterial death as controls. IDANPs consist of hydroxyapatite (HA) doped with iron. HA is a mineral known to be biocompatible and analogous to the inorganic constituent of mammalian bone and teeth and has been approved by the Food and Drug Administration (FDA) for many applications in medicine and dentistry. Previous work has shown that for IDANPs to enhance antibacterial activity of phage to the greatest extent, bacterial cultures should be exposed to IDANPs for 1 hr prior to phage introduction. Biocompatible polymer materials which encase IDANPs and/or phage can be used to disseminate IDANPs and/or phage in a controlled manner into a physiological system for treatment of bacterial infection.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: December 7, 2021
    Inventors: Jessica M. Gregory, Jack L. Skinner, Marisa L. Pedulla, M. Katie Hailer
  • Publication number: 20200114020
    Abstract: Iron-doped apatite nanoparticles (IDANPs) are useful for the prevention, treatment, or alleviation of signs or symptoms associated with viral activation or infection. IDANPs have demonstrated a significant influence over herpes simplex virus 1 (HSV-1) infection of two mammalian cell lines. Specifically, IDANPs decreased HSV-1 infection of African Green Monkey kidney epithelial (Vero) cells by 84% and HSV-1 infection of human lung bronchus (BEAS-2B) cells by 71%. In a mouse model, IDANPs delivered at various concentrations and by multiple delivery media, prevented redness, swelling, and/or sores caused by HSV-1 infection in 100% of mice tested during the treatment period. Further, once IDANP treatment had ceased, mice did not experience redness, swelling, and/or sores for at least one and up to nine days thereafter, demonstrating IDANPs not only prevent signs and symptoms during treatment, but that IDANPs prevent future signs and symptoms caused by mammalian viral infections.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Jessica M. Gregory, Jack L. Skinner, Marisa L. Pedulla, M. Katie Hailer
  • Patent number: 10532070
    Abstract: Iron-doped apatite nanoparticles (IDANPs) are useful for the prevention, treatment, or alleviation of signs or symptoms associated with viral activation or infection. IDANPs have demonstrated a significant influence over herpes simplex virus 1 (HSV-1) infection of two mammalian cell lines. Specifically, IDANPs decreased HSV-1 infection of African Green Monkey kidney epithelial (Vero) cells by 84% and HSV-1 infection of human lung bronchus (BEAS-2B) cells by 71%. IDANPs consist of hydroxyapatite (HA) doped with iron. HA is a mineral known to be biocompatible and analogous to the inorganic constituent of mammalian bone and teeth and has been approved by the Food and Drug Administration (FDA) for many applications in medicine and dentistry. Lactate Dehydrogenase (LDH) and XTT (2,3-Bis 2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt) cytotoxicity assays revealed that IDANPs are largely non-toxic to Vero, BEAS-2B, and human cervical cancer (HeLa) cells lines.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: January 14, 2020
    Inventors: Jessica M. Gregory, Jack L. Skinner, Marisa L. Pedulla, M. Katie Hailer
  • Publication number: 20190255105
    Abstract: Iron-doped apatite nanoparticles (IDANPs) are useful for the prevention, treatment, or alleviation of signs or symptoms associated with viral activation or infection. IDANPs have demonstrated a significant influence over herpes simplex virus 1 (HSV-1) infection of two mammalian cell lines. Specifically, IDANPs decreased HSV-1 infection of African Green Monkey kidney epithelial (Vero) cells by 84% and HSV-1 infection of human lung bronchus (BEAS-2B) cells by 71%. IDANPs consist of hydroxyapatite (HA) doped with iron. HA is a mineral known to be biocompatible and analogous to the inorganic constituent of mammalian bone and teeth and has been approved by the Food and Drug Administration (FDA) for many applications in medicine and dentistry. Lactate Dehydrogenase (LDH) and XTT (2,3-Bis 2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt) cytotoxicity assays revealed that IDANPs are largely non-toxic to Vero, BEAS-2B, and human cervical cancer (HeLa) cells lines.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Inventors: Jessica M. Gregory, Jack L. Skinner, Marisa L. Pedulla, M. Katie Hailer