Patents by Inventor M. Khairul Alam

M. Khairul Alam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9114404
    Abstract: A discharge electrode using carbon fibers, nanofibers and/or nanotubes to generate the corona discharge. The invention contemplates carbon fiber electrodes with or without a polymer matrix to form a composite, and a supporting configuration in which the fibers are wrapped helically around a supporting rod that extends along the length of the electrode. Another supporting configuration includes the fibers stretched across the gas flow path. Yet another supporting configuration includes mounting the fibers along the length of the support rod substantially parallel to the rod.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: August 25, 2015
    Assignee: Ohio University
    Inventor: M. Khairul Alam
  • Publication number: 20120227588
    Abstract: A discharge electrode using carbon fibers, nanofibers and/or nanotubes to generate the corona discharge. The invention contemplates carbon fiber electrodes with or without a polymer matrix to form a composite, and a supporting configuration in which the fibers are wrapped helically around a supporting rod that extends along the length of the electrode. Another supporting configuration includes the fibers stretched across the gas flow path. Yet another supporting configuration includes mounting the fibers along the length of the support rod substantially parallel to the rod.
    Type: Application
    Filed: July 8, 2010
    Publication date: September 13, 2012
    Applicant: OHIO UNIVERSITY
    Inventor: M. Khairul Alam
  • Patent number: 7976616
    Abstract: The invention is a discharge electrode in an electrostatic precipitator having a power supply connected to at least one collection electrode and a flow of gas across the collection electrode. The discharge electrode has a plurality of conductive fibers electrically connected to the power supply and fiber tips exposed to the flow of gas. The fiber tips preferably extend from a composite in which the fibers reinforce a matrix material, but alternatively can be a large number of filaments extending from a composite rod.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: July 12, 2011
    Assignee: Ohio University
    Inventor: M. Khairul Alam
  • Publication number: 20080190296
    Abstract: The invention is a discharge electrode in an electrostatic precipitator having a power supply connected to at least one collection electrode and a flow of gas across the collection electrode. The discharge electrode has a plurality of conductive fibers electrically connected to the power supply and fiber tips exposed to the flow of gas. The fiber tips preferably extend from a composite in which the fibers reinforce a matrix material, but alternatively can be a large number of filaments extending from a composite rod.
    Type: Application
    Filed: April 19, 2006
    Publication date: August 14, 2008
    Applicant: OHIO UNIVERSITY
    Inventor: M. Khairul Alam
  • Patent number: 6783575
    Abstract: A laminar flow, wet electrostatic precipitator (ESP) with planar collecting electrodes preferably made of membranes, such as a woven silica fiber. The collecting electrodes are spaced close to planar discharge electrodes to promote laminar flow (Re<2300). Charging electrodes are positioned upstream of the wet ESP to charge the particulate entering the wet ESP to promote collection. The wet ESP is preferably downstream from a conventional turbulent dry ESP for collecting a substantial portion of the larger particulate in the gas stream prior to the gas stream entering the wet ESP.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: August 31, 2004
    Assignee: Ohio University
    Inventors: Hajrudin Pasic, M. Khairul Alam, David J. Bayless
  • Publication number: 20030217642
    Abstract: A laminar flow, wet electrostatic precipitator (ESP) with planar collecting electrodes preferably made of membranes, such as a woven silica fiber. The collecting electrodes are spaced close to planar discharge electrodes to promote laminar flow (Re<2300). Charging electrodes are positioned upstream of the wet ESP to charge the particulate entering the wet ESP to promote collection. The wet ESP is preferably downstream from a conventional turbulent dry ESP for collecting a substantial portion of the larger particulate in the gas stream prior to the gas stream entering the wet ESP.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 27, 2003
    Inventors: Hajrudin Pasic, M. Khairul Alam, David J. Bayless