Patents by Inventor M. Parans Paranthaman

M. Parans Paranthaman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240408554
    Abstract: A method of separating lithium (Li) from aluminum (Al) includes: obtaining an aqueous feed solution containing an acid, Li, and Al; providing a membrane module including a plurality of hollow fibers that are hydrophobic and include a porous sidewall defining a lumen side spaced apart from a shell side; wetting the porous sidewall of the plurality of hollow fibers with an organic phase including a cationic extractant and an organic solvent such that the organic phase is immobilized in the porous sidewall; performing membrane solvent extraction by passing the feed solution along one of the lumen side or the shell side of the plurality of hollow fibers and simultaneously passing a strip solution along the other of the lumen side or the shell side of the plurality of hollow fibers. The cationic extractant in the porous sidewall continuously extracts Al from the feed solution while substantially rejecting Li for recovery.
    Type: Application
    Filed: June 5, 2024
    Publication date: December 12, 2024
    Inventors: Ramesh R. Bhave, Syed Z. Islam, M. Parans Paranthaman, Priyesh A. Wagh
  • Publication number: 20240266528
    Abstract: A method of activating an electrode material is provided. The method includes adding an ion-conducting salt to an organic solvent to obtain a salt solution. An electrode material is introduced to the salt solution to obtain a reaction mixture by heat treating. The reaction mixture is heat treated at a temperature in a range of 50 to 70° C. for a period of time to surface coat the electrode material with an inorganic compound to obtain an activated electrode material. The ion-conducting salt may be a metal bis(fluorosulfony)imide, the metal being selected from a group consisting of Li, Na, K, Zn, Mg, Al, and Fe. The time period may be at least 4 hours and may be in a range of 8 to 24 hours. The inorganic compound coated on the electrode material may be LiF.
    Type: Application
    Filed: February 5, 2024
    Publication date: August 8, 2024
    Inventors: Charl J. Jafta, Xiao-Guang Sun, M. Parans Paranthaman
  • Publication number: 20230008491
    Abstract: Polymer magnet composites including NdFeB in a polycarbonate (PC) binder matrix are processed using processes including batch mixing and twin screw extrusion. One method includes adding PC to a compartment of a batch mixer and mixing the PC while the compartment is at a temperature greater than a flow temperature of the PC, to form a mixed PC material. The method also includes adding a NdFeB magnetic material to the compartment with the mixed PC material in four batches while the compartment is at the temperature greater than the flow temperature of the PC to form a mixed PC and NdFeB magnetic material, wherein each batch is mixed in the compartment for 1 to 3 minutes before the next batch is added. In addition, a total mixing time is 6 to 12 minutes, and the compartment includes an inert atmosphere. Other embodiments are described and claimed.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 12, 2023
    Inventors: Kaustubh Mungale, M. Parans Paranthaman, Uday Kumar Vaidya
  • Publication number: 20220340438
    Abstract: A method of selectively extracting lithium from a lithium sulfate aqueous solution, the method comprising: (i) mixing an aluminum-containing sorbent material into the lithium sulfate aqueous solution to form a precursor mixture, wherein the aluminum-containing sorbent material is an aluminum hydroxide, aluminum oxide, or combination thereof; and (ii) heating the precursor mixture to a temperature of 50-200° C. to result in selective formation of a solid lithium-aluminum complex and mother liquor; and wherein the method may further comprise: (iii) recovering isolated lithium salt from the solid lithium-aluminum complex by heating the solid lithium-aluminum complex in water or aqueous solution at a temperature of 50-100° C. to result in delithiation of the solid lithium-aluminum complex with transfer of the lithium salt from the solid lithium-aluminum complex to the water or aqueous solution, along with production of aluminum hydroxide solid.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 27, 2022
    Inventors: M. Parans Paranthaman, Bruce A. Moyer, Tej Nath Lamichhane
  • Publication number: 20220134291
    Abstract: A lithium extraction composite comprising: (i) a porous support and (ii) particles of a lithium-selective sorbent material coated on at least one surface of the support, wherein the support has a planar membrane, fiber (or rod), or tubular shape. A method for extracting and recovering a lithium salt from an aqueous solution by use of the above-described composition is also described, the method comprising (a) flowing the aqueous source solution through a first zone or over a first surface of the lithium extraction composite to result in selective lithium intercalation in the lithium-selective sorbent material in the first zone or first surface; and (b) simultaneously recovering lithium salt extracted in step (a) from said lithium-selective sorbent material by flowing an aqueous stripping solution through a second zone or over a second surface of the lithium extraction composite in which lithium ions from the first zone or first surface diffuse.
    Type: Application
    Filed: January 11, 2022
    Publication date: May 5, 2022
    Applicants: UT-Battelle, LLC, All American Lithium LLC
    Inventors: Ramesh R. Bhave, Stephen Harrison, Bruce A. Moyer, M. Parans Paranthaman
  • Patent number: 11253820
    Abstract: A lithium extraction composite comprising: (i) a porous support and (ii) particles of a lithium-selective sorbent material coated on at least one surface of the support, wherein the support has a planar membrane, fiber (or rod), or tubular shape. A method for extracting and recovering a lithium salt from an aqueous solution by use of the above-described composition is also described, the method comprising (a) flowing the aqueous source solution through a first zone or over a first surface of the lithium extraction composite to result in selective lithium intercalation in the lithium-selective sorbent material in the first zone or first surface; and (b) simultaneously recovering lithium salt extracted in step (a) from said lithium-selective sorbent material by flowing an aqueous stripping solution through a second zone or over a second surface of the lithium extraction composite in which lithium ions from the first zone or first surface diffuse.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 22, 2022
    Assignees: UT-Battelle, LLC, All American Lithium LLC
    Inventors: Ramesh R. Bhave, Stephen Harrison, Bruce A. Moyer, M. Parans Paranthaman
  • Publication number: 20190275473
    Abstract: A lithium extraction composite comprising: (i) a porous support and (ii) particles of a lithium-selective sorbent material coated on at least one surface of the support, wherein the support has a planar membrane, fiber (or rod), or tubular shape. A method for extracting and recovering a lithium salt from an aqueous solution by use of the above-described composition is also described, the method comprising (a) flowing the aqueous source solution through a first zone or over a first surface of the lithium extraction composite to result in selective lithium intercalation in the lithium-selective sorbent material in the first zone or first surface; and (b) simultaneously recovering lithium salt extracted in step (a) from said lithium-selective sorbent material by flowing an aqueous stripping solution through a second zone or over a second surface of the lithium extraction composite in which lithium ions from the first zone or first surface diffuse.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Ramesh R. Bhave, Stephen Harrison, Bruce A. Moyer, M. Parans Paranthaman
  • Publication number: 20180215854
    Abstract: A method for producing a bonded permanent magnet by additive manufacturing, the method comprising: (i) incorporating components of a reactive precursor material into an additive manufacturing device, the reactive precursor material comprising an amine component, an isocyanate component, and particles having a permanent magnetic composition; and (ii) mixing and extruding the crosslinkable reactive precursor material through a nozzle of the additive manufacturing device and depositing the extrudate onto a substrate under conditions where the extrudate is permitted to cure, to produce a bonded permanent magnet of desired shape. The resulting bonded permanent magnet and articles made thereof are also described.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 2, 2018
    Inventors: M. Parans PARANTHAMAN, Orlando RIOS, William G. CARTER, David FENN, Cajetan Ikenna NLEBEDIM
  • Patent number: 6956012
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: October 18, 2005
    Assignee: UT-Battelle, LLC
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Publication number: 20030211948
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Application
    Filed: April 24, 2003
    Publication date: November 13, 2003
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Patent number: 6617283
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: September 9, 2003
    Assignee: UT-Battelle, LLC
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen
  • Publication number: 20020198112
    Abstract: An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
    Type: Application
    Filed: June 22, 2001
    Publication date: December 26, 2002
    Inventors: M. Parans Paranthaman, Tolga Aytug, David K. Christen