Patents by Inventor Márcio D. Lima

Márcio D. Lima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180297340
    Abstract: A multilayer composite is disclosed comprising a heat shrinkable polymer layer and a nanofiber layer. Methods of forming the composite and uses thereof are also described.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 18, 2018
    Applicant: Lintec of America, Inc.
    Inventors: Marcio D. Lima, Julia Bykova
  • Publication number: 20180194102
    Abstract: Examples described include composite nanofibers sheets that have been “infiltrated” with a polymer (i.e., the polymer has flowed past a surface of the nanofiber sheet and into at least some of spaces within the sheet defined by the nanofibers). An adhesive nanofiber tape is formed when the infiltrating polymer is an adhesive and the adhesive infiltrates the nanofiber sheet from a one major surface of the nanofiber sheet. In other described examples, some portions of nanofibers in the sheet have been conformally coated with at least one metal layer.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Applicant: Lintec of America, Inc.
    Inventors: Marcio D. Lima, Julia Bykova, Takahiro Ueda
  • Publication number: 20180194109
    Abstract: A composite including a heat conformable polymer and a nanofiber sheet is disclosed. The heat conformable polymer can be a hot melt adhesive, and the combination can provide an electrically conductive hot melt adhesive composite. The nanofiber layer is protected and the composite is conformable and/or can be adhered to a variety of surfaces.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Applicant: Lintec of America, Inc.
    Inventors: Marcio D. Lima, Julia Bykova
  • Publication number: 20180194101
    Abstract: Techniques are disclosed for producing multilayered composites of adhesive nanofiber composites. Specifically, one or more sheets of highly aligned nanofibers are partially embedded in an adhesive such that at least a portion of the nanofiber sheet is free from adhesive and is available to conduct current with adjacent electrical features. In some example embodiments, the adhesive nanofiber composites are metallized with a conductive metal and in these and other embodiments, the adhesive nanofiber composites may also be stretchable.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Applicant: Lintec of America, Inc.
    Inventors: Marcio D. Lima, Julia Bykova
  • Publication number: 20180194920
    Abstract: A flexible sheet comprising a composite sheet, the composite sheet comprising a binder and an aggregate containing a plurality of carbon nanotubes that is disposed in the binder, wherein the aggregate is formed as a waveform structure travelling along a single direction in a plane of the composite sheet, is provided. The disclosed flexible sheets may be used as thermally conductive components, electrically conductive components, antistatic components, electromagnetic wave shields, and/or heating elements, in addition to other possible uses.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 12, 2018
    Applicant: Lintec of America, Inc.
    Inventors: Marcio D. Lima, Kanzan Inoue
  • Publication number: 20180187343
    Abstract: A dispenser is described for dispensing nanofiber yarns that includes a housing that defines an inlet, an outlet, and a chamber. A spool, around which is wound a length of nanofiber yarn, is disposed within the chamber defined by the housing. The nanofiber yarn is threaded from the chamber through the outlet and can be dispensed in a controlled way that reduces the likelihood of developing knots within the nanofiber yarn, and which facilitates convenient application of the yarn onto an underlying surface. In some cases, the dispenser can be used to concurrently dispense an adhesive or other polymer along with the nanofiber yarn.
    Type: Application
    Filed: December 4, 2017
    Publication date: July 5, 2018
    Applicant: Lintec of America, Inc.
    Inventors: Marcio D. Lima, Raquel Ovalle-Robles
  • Publication number: 20180171512
    Abstract: Methods, systems, and apparatus for fabricating nanofiber yarn at rates at of at least 30 m/min (1.8 kilometers (km)/hour (hr)) using a “false twist” nanofiber yarn spinner and a false twist spinning technique. In a false twist spinning technique, a twist is introduced to nanofibers in a strand by twisting the nanofibers at points between ends of the strand.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 21, 2018
    Applicant: Lintec of America, Inc.
    Inventors: BaeKyun Kim, Julia Bykova, Luis Plata, Yang Yang, Marcio D. Lima
  • Publication number: 20180073490
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize coiled yarns/polymer fibers and can be either neat or comprising a guest. In some embodiments, the torsional fiber actuator includes a first polymer fiber (exhibiting a first polymer fiber diameter) and a torsional return spring in communication with the first polymer fiber. The first polymer fiber is configured to include a first plurality of twists in a first direction to produce a twisted polymer fiber. The first polymer fiber is further configured to include a plurality of coils in the twisted polymer fiber in a second direction each coil having a mean coil diameter.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Applicant: Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung DeAndrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman
  • Patent number: 9903350
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: February 27, 2018
    Assignee: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung De Andrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Fatma Goktepe, Ozer Goktepe, Dongseok Suh, Ray H. Baughman
  • Patent number: 9784249
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 10, 2017
    Assignee: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung De Andrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman
  • Publication number: 20150219078
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Application
    Filed: August 1, 2013
    Publication date: August 6, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung DeAndrade, Shaoli Fang, Jiyoung Oh, Mikhail Kozlov, Fatma Goktepe, Ozer Goktepe, Dongseok Suh, Ray H. Baughman
  • Publication number: 20150152852
    Abstract: Actuators (artificial muscles) comprising twist-spun nanofiber yarn or twist-inserted polymer fibers generate torsional and/or tensile actuation when powered electrically, photonically, chemically, thermally, by absorption, or by other means. These artificial muscles utilize non-coiled or coiled yarns and can be either neat or comprising a guest. Devices comprising these artificial muscles are also described.
    Type: Application
    Filed: January 30, 2015
    Publication date: June 4, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Na Li, Carter S. Haines, Marcio D. Lima, Monica Jung De Andrade, Shaoli Fang, Jiyoung Oh, Mikhail E. Kozlov, Dongseok Suh, Ray H. Baughman