Patents by Inventor M. Sean McBrayer

M. Sean McBrayer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200022712
    Abstract: A thrombectomy removal system includes a catheter having a distal end and defining a lumen filled with a liquid column having a proximal portion and a distal portion, a vacuum source, a vent liquid source, and a vacuum and vent control system configured to cyclically connect or disconnect the vacuum source and the vent liquid source to change a level of vacuum at the distal end and substantially prevent forward flow. The vacuum source and the vent source are respectively fluidically connected to the vacuum and vent valves. A manifold connects the proximal portion to the vacuum and vent sources through the valves. Control of the valves prevents forward flow of the distal portion out from the distal end during each cycle. Each cycle can have states including vacuum-only, first double-closed, vent-only, and second double-closed. A time of the double-closed states can be no greater than 30 ms.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 23, 2020
    Applicant: Syntheon 2.0, LLC
    Inventors: Derek Dee Deville, Matthew A. Palmer, William T. Bales, JR., M. Sean McBrayer, Eric Petersen, Richard Cartledge
  • Publication number: 20200015889
    Abstract: A method for operating a catheter provides a mechanical stiffener to a catheter shaft portion, the shaft comprising an inner sheath having a distal end and an outer surface and defining an access lumen extending distally to the distal end and an outer sheath having an inner surface surrounding the inner sheath distally to the distal end, defining an annulus between the outer and inner surfaces, the annulus having a connection at which vacuum applies to the annulus, and having a substantially constant outer diameter over the portion to the distal end. A tool is shaped and sized to pass through the access lumen and past the distal end. The portion is placed in an increased stiffened state by applying vacuum to create a stable base with at least a shaft segment within the anatomy that atraumatically resists reaction forces applied to the shaft by the tool.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 16, 2020
    Applicant: Syn Variflex, LLC
    Inventors: Kevin W. Smith, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Joe Abelleira
  • Patent number: 10531883
    Abstract: A thrombectomy removal system includes a catheter having a distal end and defining a lumen filled with a liquid column having a proximal portion and a distal portion, a vacuum source, a vent liquid source, and a vacuum and vent control system configured to cyclically connect or disconnect the vacuum source and the vent liquid source to change a level of vacuum at the distal end and substantially prevent forward flow. The vacuum source and the vent source are respectively fluidically connected to the vacuum and vent valves. A manifold connects the proximal portion to the vacuum and vent sources through the valves. Control of the valves prevents forward flow of the distal portion out from the distal end during each cycle. Each cycle can have states including vacuum-only, first double-closed, vent-only, and second double-closed. A time of the double-closed states can be no greater than 30 ms.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: January 14, 2020
    Assignee: SYNTHEON 2.0, LLC
    Inventors: Derek Dee Deville, Matthew A. Palmer, William T. Bales, Jr., M. Sean McBrayer, Eric Petersen, Richard Cartledge
  • Publication number: 20200008797
    Abstract: A multiple-firing clip device includes a hollow shaft defining a lateral opening communicating with an environment and a distal shaft portion between the lateral opening and a distal end opening. A shuttle longitudinally moves on the shaft and comprises a shuttle body defining a lumen surrounding the shaft, a snare, and a snare-extender slide defining a snare track to form a snare travel path in which the snare is disposed from the body and through the track and a portion of the body. The slide moves along a given extent defining a slide distance and a distal end and movement of the slide to the distal end shortens the snare travel path to extend the snare portion through the lateral opening, through the distal shaft portion, and distally out from a distal side of the body longer than the given extent to secure a suture with the snare.
    Type: Application
    Filed: March 15, 2019
    Publication date: January 9, 2020
    Inventors: Derek Dee Deville, Kevin W. Smith, Michael Walter Kirk, Carlos Rivera, George Nunez, Thomas O. Bales, JR., Korey Kline, Matthew A. Palmer, M. Sean McBrayer, Richard George Cartledge, Max Pierre Mendez, Kevin K. Dang, Bryan A. Janish, Manouchehr A. Miraki
  • Publication number: 20190374219
    Abstract: A multiple-firing clip device comprises a shaft comprising an exterior surface, an interior receiving therein suture fixation clips, and a distal end opening shaped to eject a suture fixation clip therefrom. The shaft defines a lateral opening and a distal shaft portion between the lateral opening and the distal end opening. A shuttle moves on the shaft and comprises a shuttle body, a snare having a distal snare portion, and a snare extension slide movable from the shuttle body along a given extent defining a slide distance and a distal end. The shuttle extends at least the distal snare portion distally through the lateral opening from the environment into the interior, through the distal shaft portion, and through the distal end opening along a length that is at least equal to the slide distance when the snare extension slide moves to the distal end of the given extent.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 12, 2019
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Richard George Cartledge, Korey Kline, Carlos Rivera, George Nunez
  • Patent number: 10463427
    Abstract: A controllable stiffness catheter comprising a shaft comprising an inner sheath defining an access lumen, an outer sheath surrounding the inner sheath and defining an annulus therebetween, the annulus having a vacuum connection at which a vacuum is applied to the annulus, and a mechanical stiffener disposed at least at a portion of the annulus.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 5, 2019
    Assignee: Syn Variflex, LLC
    Inventors: Kevin W. Smith, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, Jr., Derek Dee Deville, Joe Abelleira
  • Publication number: 20190231356
    Abstract: An external LAA exclusion clip comprises a clipping assembly comprising first and second opposing clip struts each of the clip struts having a tissue-contacting surface and first and second bias surfaces, a bias assembly connecting the first clip strut to the second clip strut to align the first and second clip struts in a strut plane passing through the tissue-contacting surface. The bias assembly comprises at least one first bias spring connected to the first bias surface of the first clip strut and to the first bias surface of the second clip strut and at least one second bias spring connected to the second bias surface of the first clip strut and the second bias surface of the second clip strut. The first bias spring and the second bias spring are configured to permit movement of the first and second clip struts in the strut plane.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 1, 2019
    Applicant: Syntheon 2.0, LLC
    Inventors: Derek Dee Deville, Matthew A. Palmer, Richard Cartledge, Thomas O. Bales, JR., M. Sean McBrayer, Eric Petersen, Tyler Bond, William T. Bales, Michael Walter Kirk
  • Publication number: 20190216622
    Abstract: A delivery apparatus can include a handle portion and at least one rotatable drive shaft. The handle portion has an actuation mechanism. The actuation mechanism includes a motor and one or more actuators. The rotatable drive shaft has a proximal end portion and a distal end portion. The proximal end portion is coupled to the motor, and the distal end portion is configured to be releasably coupled to a prosthetic heart valve. The actuation mechanism is configured to control and monitor expansion of the prosthetic heart valve. The handle is configured for actuating the actuation mechanism, tracking a response of native tissue when the prosthetic heart valve is in contact with the native tissue, and stopping expansion of the prosthetic heart valve once a rate of change of expansion of the prosthetic heart valve declines below a threshold.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Richard George Cartledge, Kevin W. Smith, Thomas O. Bales, Jr., Derek Dee Deville, Korey Kline, Max Pierre Mendez, Matthew A. Palmer, Michael Walter Kirk, Carlos Rivera, Eric Petersen, M. Sean McBrayer
  • Patent number: 10327759
    Abstract: A multiple-firing crimp device comprises crimps, a shaft, a crimp movement assembly, and a snare. Each crimp has an internal hollow. The shaft has a distal crimping location, an exterior surface, and an interior with the clips stacked therein, the crimps moving therein along a longitudinal axis. The shaft defines a lateral opening proximal to the crimping location and communicates the interior to the environment outside the exterior surface. The crimp movement assembly within the shaft delivers the first crimp to the distal crimping location by moving the first crimp longitudinally from a first proximal position into the distal crimping location and returning to a second proximal position without the first crimp. The snare pulls at least one cord from distal of the first crimp through the first crimp and through a portion of the shaft and out the side of the shaft through the lateral opening.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: June 25, 2019
    Assignee: Edwards Lifesciences AG
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, Jr., Derek Dee Deville, Richard George Cartledge, Korey Kline, Carlos Rivera, George Nunez
  • Patent number: 10327758
    Abstract: A multiple-firing crimp device comprises crimps, a shaft, a crimp movement assembly, and a snare. Each crimp has an internal hollow. The shaft has a distal crimping location, an exterior surface, and an interior with the clips stacked therein, the crimps moving therein along a longitudinal axis. The shaft defines a lateral opening proximal to the crimping location and communicates the interior to the environment outside the exterior surface. The crimp movement assembly within the shaft delivers the first crimp to the distal crimping location by moving the first crimp longitudinally from a first proximal position into the distal crimping location and returning to a second proximal position without the first crimp. The snare pulls at least one cord from distal of the first crimp through the first crimp and through a portion of the shaft and out the side of the shaft through the lateral opening.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 25, 2019
    Assignee: Edwards Lifesciences AG
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, Jr., Derek Dee Deville, Richard Cartledge, Korey Kline, Carlos Rivera, George Nunez
  • Patent number: 10159527
    Abstract: A method for delivering RF energy to living tissue includes the steps of extending a guidewire to a tissue treatment site in a body. A controllable stiffness catheter is provided with a stiffness device having non-metallic properties and a temperature-changing device. The stiffness device is in a stiff state below a given temperature and in a soft state above the given temperature. While supplying power to the temperature-changing device, the catheter is threaded along the guidewire up to the treatment site in the soft state. Power is removed from the temperature-changing device to alter the non-metallic properties of the stiffness device and directly result in a change of the stiffness device to the stiff state without straightening the catheter. The RF energy supply device is physically contacted with the treatment site and RF energy is delivered to the treatment site from the RF energy supply device.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: December 25, 2018
    Assignee: Syntheon, LLC
    Inventors: Kevin W. Smith, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, Jr., Derek Dee Deville, Joe Abelleira
  • Publication number: 20180199991
    Abstract: A controllable stiffness catheter comprises a shaft comprising an inner sheath defining an access lumen, an outer sheath surrounding the inner sheath and defining an annulus therebetween, the annulus having a vacuum connection at which a vacuum is applied to the annulus, and a mechanical stiffener disposed at least at a portion of the annulus and free to move relatively in the annulus with respect to at least one of the inner sheath and the outer sheath.
    Type: Application
    Filed: February 15, 2018
    Publication date: July 19, 2018
    Applicant: Syntheon, LLC
    Inventors: Kevin W. Smith, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Joe Abelleira
  • Publication number: 20180193091
    Abstract: A controllable stiffness catheter comprising a shaft comprising an inner sheath defining an access lumen, an outer sheath surrounding the inner sheath and defining an annulus therebetween, the annulus having a vacuum connection at which a vacuum is applied to the annulus, and a mechanical stiffener disposed at least at a portion of the annulus.
    Type: Application
    Filed: February 7, 2018
    Publication date: July 12, 2018
    Applicant: Syntheon, LLC
    Inventors: Kevin W. Smith, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Joe Abelleira
  • Patent number: 10016193
    Abstract: A multiple-firing crimp device comprises crimps, a shaft, a crimp movement assembly, and a snare. Each crimp has an internal hollow. The shaft has a distal crimping location, an exterior surface, and an interior with the clips stacked therein, the crimps moving therein along a longitudinal axis. The shaft defines a lateral opening proximal to the crimping location and communicates the interior to the environment outside the exterior surface. The crimp movement assembly within the shaft delivers the first crimp to the distal crimping location by moving the first crimp longitudinally from a first proximal position into the distal crimping location and returning to a second proximal position without the first crimp. The snare pulls at least one cord from distal of the first crimp through the first crimp and through a portion of the shaft and out the side of the shaft through the lateral opening.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 10, 2018
    Assignee: Edwards Lifesciences AG
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, Jr., Derek Dee Deville, Richard Cartledge, Korey Kline, Carlos Rivera, George Nunez
  • Patent number: 9827093
    Abstract: A method for implanting a stent includes contracting a self-expanding/forcibly-expanding stent of a shape-memory material set to a given shape to a reduced implantation size with a delivery system having drive wires. The stent has a selectively adjustable assembly with adjustable elements operatively connected to the drive wires such that, when the adjustable elements are adjusted by the drive wires, a configuration change in at least a portion of the self-expanding stent occurs. The contracted stent is inserted into a native annulus in which the stent is to be implanted. The drive wires are rotated with the delivery system to forcibly expand the stent into the native annulus. While rotating the drive wires, a torque applied to the drive wires is determined with the delivery system. Rotation of the drive wires is stopped based upon a value of the determined torque.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: November 28, 2017
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Richard George Cartledge, Kevin W. Smith, Thomas O. Bales, Jr., Derek Dee Deville, Korey Kline, Max Pierre Mendez, Matthew A. Palmer, Michael Walter Kirk, Carlos Rivera, Eric Petersen, M. Sean McBrayer
  • Publication number: 20160367242
    Abstract: A multiple-firing crimp device comprises crimps, a shaft, a crimp movement assembly, and a snare. Each crimp has an internal hollow. The shaft has a distal crimping location, an exterior surface, and an interior with the clips stacked therein, the crimps moving therein along a longitudinal axis. The shaft defines a lateral opening proximal to the crimping location and communicates the interior to the environment outside the exterior surface. The crimp movement assembly within the shaft delivers the first crimp to the distal crimping location by moving the first crimp longitudinally from a first proximal position into the distal crimping location and returning to a second proximal position without the first crimp. The snare pulls at least one cord from distal of the first crimp through the first crimp and through a portion of the shaft and out the side of the shaft through the lateral opening.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Applicant: Edwards Lifesciences AG
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Richard George Cartledge, Korey Kline, Carlos Rivera, George Nunez
  • Publication number: 20160175045
    Abstract: A method for delivering RF energy to living tissue includes the steps of extending a guidewire to a tissue treatment site in a body. A controllable stiffness catheter is provided with a stiffness device having non-metallic properties and a temperature-changing device. The stiffness device is in a stiff state below a given temperature and in a soft state above the given temperature. While supplying power to the temperature-changing device, the catheter is threaded along the guidewire up to the treatment site in the soft state. Power is removed from the temperature-changing device to alter the non-metallic properties of the stiffness device and directly result in a change of the stiffness device to the stiff state without straightening the catheter. The RF energy supply device is physically contacted with the treatment site and RF energy is delivered to the treatment site from the RF energy supply device.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Inventors: Kevin W. Smith, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Joe Abelleira
  • Publication number: 20160166248
    Abstract: A multiple-fire securing device includes a hollow outer shaft, a reloader, a reloader movement assembly, a rail, and securing structures each defining an inner securing orifice. The reloader longitudinally moves within the outer shaft and has a distal end shaped to temporarily contact one of the securing structures. The rail is disposed within the reloader and has an installing location. The securing structures are disposed on the rail. The reloader movement assembly moves the reloader longitudinally in a distal direction to deliver a first securing structure to the installing location from a first proximal position and moves the reloader proximally away from the installing location without the first securing structure to a position in which the distal end of the reloader temporarily contacts a second one of the securing structures. The second and successive securing structures are moved one at a time to the installing location.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Inventors: Derek Dee Deville, Kevin W. Smith, Michael Walter Kirk, Carlos Rivera, George Nunez, Thomas O. Bales, JR., Korey Kline, Matthew A. Palmer, M. Sean McBrayer, Richard Cartledge, Max Pierre Mendez, Hengchu Cao, Anthony Peter Carcia, Kevin Dang, Carey Hendsbee, Brent K. Hoffman, Brian R. Jacobs, Mohammad Jafari, Brian Janish, Jeffrey L. Mahoney, Raffaele Mazzei, Manouchehr A. Miraki, Ryan Moehle, Jeremiah Morgan, Michael C. Murad, Travis Zenyo Oba, Ralph Schneider, Fabian Daniel Schroeder, Tyler Douglas Smith, Ming H. Wu
  • Publication number: 20160038137
    Abstract: A multiple-firing crimp device comprises crimps, a shaft, a crimp movement assembly, and a snare. Each crimp has an internal hollow. The shaft has a distal crimping location, an exterior surface, and an interior with the clips stacked therein, the crimps moving therein along a longitudinal axis. The shaft defines a lateral opening proximal to the crimping location and communicates the interior to the environment outside the exterior surface. The crimp movement assembly within the shaft delivers the first crimp to the distal crimping location by moving the first crimp longitudinally from a first proximal position into the distal crimping location and returning to a second proximal position without the first crimp. The snare pulls at least one cord from distal of the first crimp through the first crimp and through a portion of the shaft and out the side of the shaft through the lateral opening.
    Type: Application
    Filed: September 29, 2015
    Publication date: February 11, 2016
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Richard Cartledge, Korey Kline, Carlos Rivera, George Nunez
  • Publication number: 20150142021
    Abstract: A multiple-firing crimp device comprises crimps, a shaft, a crimp movement assembly, and a snare. Each crimp has an internal hollow. The shaft has a distal crimping location, an exterior surface, and an interior with the clips stacked therein, the crimps moving therein along a longitudinal axis. The shaft defines a lateral opening proximal to the crimping location and communicates the interior to the environment outside the exterior surface. The crimp movement assembly within the shaft delivers the first crimp to the distal crimping location by moving the first crimp longitudinally from a first proximal position into the distal crimping location and returning to a second proximal position without the first crimp. The snare pulls at least one cord from distal of the first crimp through the first crimp and through a portion of the shaft and out the side of the shaft through the lateral opening.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: Kevin W. Smith, Max Pierre Mendez, Matthew A. Palmer, M. Sean McBrayer, Thomas O. Bales, JR., Derek Dee Deville, Richard Cartledge, Korey Kline, Carlos Rivera, George Nunez