Patents by Inventor Maarten Hubertus VAN ES

Maarten Hubertus VAN ES has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10859925
    Abstract: The present document relates to a method of determining an overlay or alignment error between a first and a second device layer of a multilayer semiconductor device (26) using an atomic force microscopy system (20). The system comprises a scan head (22) including a probe (28). The probe includes a cantilever and a probe tip (30). The method comprises moving the probe tip and the semiconductor device relative to each other for scanning of the surface of the semiconductor device with the probe tip, wherein the probe tip is intermittently or continuously in contact with the surface during scanning. During scanning a signal application actuator (70) applies an acoustic input signal to the substrate, and motion of the probe tip is monitored with a tip position detector for obtaining an output signal, to be analyzed for mapping subsurface structures in different device layers. The signal application actuator includes a shear wave actuator to apply a shear acoustic wave (90) in the substrate.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 8, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventors: Violeta Navarro Paredes, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20200348334
    Abstract: A method of performing atomic force microscopy (AFM) measurements, uses an ultrasound transducer to transmit modulated ultrasound waves with a frequency above one GHz from the ultrasound transducer to a top surface of a sample through the sample from the bottom surface of the sample. Effects of ultrasound wave scattering are detected from vibrations of an AFM cantilever at the top surface of the sample. Before the start of the measurements a drop of a liquid is placed on a top surface of the ultrasound transducer. The sample is placed on the top surface of the ultrasound transducer, whereby the sample presses the liquid in the drop into a layer of the liquid between the top surface of the ultrasound transducer and a bottom surface of the sample. The AFM measurements are started after a thickness of the layer of the liquid has stabilized.
    Type: Application
    Filed: November 2, 2018
    Publication date: November 5, 2020
    Inventors: Martinus Cornelius Johannes Maria VAN RIEL, Paul Louis Maria Joseph VAN NEER, Hamed SADEGHIAN MARNANI, Maarten Hubertus VAN ES
  • Publication number: 20200309816
    Abstract: Atomic force microscopy system comprising an atomic force microscopy device and a substrate carrier having a carrier surface carrying a substrate. The substrate has a substrate main surface and a substrate scanning surface opposite the substrate main surface. The atomic force microscopy device comprises a scan head including a probe. The probe comprises a cantilever and a probe tip arranged on the cantilever. The atomic force device further comprises an actuator cooperating with at least one of the scan head or the substrate carrier for moving the probe tip and the substrate carrier relative to each other in one or more directions parallel to the carrier surface for scanning of the substrate scanning surface with the probe tip. A signal application actuator applies, during said scanning, an acoustic input signal to the substrate, said acoustic input signal generating a first displacement field in a first displacement direction only.
    Type: Application
    Filed: December 4, 2018
    Publication date: October 1, 2020
    Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Laurent FILLINGER, Paul Louis Maria Joseph VAN NEER, Daniele PIRAS, Marcus Johannes VAN DER LANS, Maarten Hubertus VAN ES, Hamed SADEGHIAN MARNANI
  • Patent number: 10775405
    Abstract: The present document relates to a method of performing defect detection on a self-assembled monolayer of a semiconductor element or semi-manufactured semiconductor element, using an atomic force microscopy system. The system comprises a probe with a probe tip, and is configured for positioning the probe tip relative to the element for enabling contact between the probe tip and a surface of the element. The system comprises a sensor providing an output signal indicative of a position of the probe tip. The method comprises: scanning the surface with the probe tip; applying an acoustic vibration signal to the element; obtaining the output signal indicative of the position of the probe tip; monitoring probe tip motion during said scanning for mapping the surface of the semiconductor element, and using a fraction of the output signal for mapping contact stiffness indicative of a binding strength.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 15, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Rutger Meijer Timmerman Thijssen
  • Patent number: 10746702
    Abstract: Method of tuning parameter settings for performing acoustic scanning probe microscopy for subsurface imaging, scanning probe microscopy system, and computer program product. This document relates to a method of tuning a scanning probe microscopy system. The method comprises: a) applying an acoustic vibration signal comprising a first frequency and a second frequency to a sample; b) at a first position of the probe tip, sweeping the first frequency across a first frequency range, and obtaining a first signal; c) at a second position of the probe tip, sweeping the first frequency across at least said first frequency range, and obtaining a second signal; d) analyzing the first and second signals to obtain a difference characteristic dependent on the first frequency. The first and second position are selected such that a subsurface structure of the sample at the first and second position is different.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 18, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Maarten Hubertus van Es
  • Publication number: 20200249255
    Abstract: The surface of the atomic force microscopy (AFM) cantilever is defined by a main cantilever body and an island. The island is partly separated from the main body by a separating space between facing edges of the main body and the island. At least one bridge connects the island to the main body, along a line around which the island is able to rotate through torsion of the at least one bridge. The island has a probe tip located on the island at a position offset from said line and a reflection area. In an AFM a light source directs light to the reflection area and a light spot position detector detects a displacement of a hght spot formed from light reflected by the reflection area, for measuring an effect of forces exerted on the probe tip.
    Type: Application
    Filed: August 23, 2018
    Publication date: August 6, 2020
    Inventors: Maarten Hubertus Van Es, Hamed Sadeghian Marnani
  • Publication number: 20200124571
    Abstract: The present invention relates to a method of performing subsurface imaging of embedded structures in a substrate underneath a substrate surface, the method comprising the steps of applying, using a signal application actuator, an acoustic input signal to the substrate, detecting, using a vibration sensor, a return signal from the substrate and analyzing the return signal for obtaining information on the embedded structures, for enabling imaging thereof wherein the step of applying the acoustic input signal comprises applying a discontinuous signal of an acoustic signal component to the substrate, the acoustic signal component having a frequency above 1 gigahertz, such that the return signal includes a scattered fraction of the discontinuous signal scattered from the embedded structures. The invention further relates to a system.
    Type: Application
    Filed: January 11, 2018
    Publication date: April 23, 2020
    Inventors: Daniele Piras, Paul Louis Maria Joseph van Neer, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20200124635
    Abstract: A method to perform sub-surface detection of nanostructures in a sample, uses an atomic force microscopy system that comprising a scan head having a probe with a cantilever and a probe tip arranged on the cantilever. The method comprises: moving the probe tip and the sample relative to each other in one or more directions parallel to the surface for scanning of the surface with the probe tip; and monitoring motion of the probe tip relative to the scan head with a tip position detector during said scanning for obtaining an output signal. During said scanning acoustic vibrations are induced in the probe tip by applying a least a first and a second acoustic input signal respectively comprising a first and a second signal component at mutually different frequencies above IGHz, differing by less than IGHz to the probe, and analyzing the output signal for mapping at least subsurface nanostructures below the surface of the sample.
    Type: Application
    Filed: January 15, 2018
    Publication date: April 23, 2020
    Inventors: Abbas Mohtashami, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20200057028
    Abstract: The document relates to a method of performing subsurface imaging of embedded structures underneath a substrate surface, using an atomic force microscopy system. The system comprises a probe with a probe tip, and a sensor for sensing a position of the probe tip. The method comprises the steps of: positioning the probe tip relative to the substrate: applying a first acoustic input signal to the substrate; applying a second acoustic input signal to the substrate; detecting an output signal from the substrate in response to the first and second acoustic input signal; and analyzing the output signal. The first acoustic input signal comprises a first signal component and a second signal component, the first signal component comprising a frequency below 250 megahertz and the second signal component either including a frequency below 2.5 megahertz or a frequency such as to provide a difference frequency of at most 2.
    Type: Application
    Filed: April 4, 2018
    Publication date: February 20, 2020
    Inventors: Daniele Piras, Paul Louis Maria Joseph van Neer, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20190383774
    Abstract: The present document relates to a anatomic force microscope comprising a probe comprising a probe tip configured to sense a sample disposed proximate to the probe tip, a detector to detect a deflection of the probe tip, an actuator coupled to the probe and configured to move the probe in a sense state with the sample at a predetermined force set point and a vibrator in communication with the sample to provide a vibration to the sample, the vibration comprising a modulation frequency, wherein the acoustic vibrator is configured to provide the vibration in a modulation period after an initial sense period without modulation and wherein the probe is moved during or after said modulation period to a successive sample position over said sample while moving the probe in a non-contact state.
    Type: Application
    Filed: January 11, 2018
    Publication date: December 19, 2019
    Inventors: Hamed Sadeghian Marnani, Lukas Kramer, Maarten Hubertus van Es
  • Publication number: 20190378769
    Abstract: The present document relates to a method of determining an overlay or alignment error between a first and a second device layer of a multilayer semiconductor device (26) using an atomic force microscopy system (20). The system comprises a scan head (22) including a probe (28). The probe includes a cantilever and a probe tip (30). The method comprises moving the probe tip and the semiconductor device relative to each other for scanning of the surface of the semiconductor device with the probe tip, wherein the probe tip is intermittently or continuously in contact with the surface during scanning. During scanning a signal application actuator (70) applies an acoustic input signal to the substrate, and motion of the probe tip is monitored with a tip position detector for obtaining an output signal, to be analyzed for mapping subsurface structures in different device layers. The signal application actuator includes a shear wave actuator to apply a shear acoustic wave (90) in the substrate.
    Type: Application
    Filed: January 11, 2018
    Publication date: December 12, 2019
    Inventors: Violeta Navarro Paredes, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20190369139
    Abstract: An atomic force microscopy device arranged for determining sub-surface structures in a sample comprises a scan head with a probe including a flexible carrier and a probe tip arranged on the flexible carrier. Therein an actuator applies an acoustic input signal to the probe and a tip position detector measures a motion of the probe tip relative to the scan head during scanning, and provides an output signal indicative of said motion, to be received and analyzed by a controller. At least an end portion of the probe tip tapers in a direction away from said flexible carrier towards an end of the probe tip. The end portion has a largest cross-sectional area Amax at a distance Dend from said end, the square root of the largest cross-sectional area Amax is at least 100 nm and the distance Dend is in the range of 0.2 to 2 the value of said square root.
    Type: Application
    Filed: January 12, 2018
    Publication date: December 5, 2019
    Inventors: Abbas Mohtashami, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20190310284
    Abstract: Method of determining an overlay error between device layers of a multilayer semiconductor device using an atomic force microscopy system, wherein the semiconductor device comprises a stack of device layers comprising a first patterned layer and a second patterned layer, and wherein the atomic force microscopy system comprises a probe tip, wherein the method comprises: moving the probe tip and the semiconductor device relative to each other for scanning of the surface; and monitoring motion of the probe tip with tip position detector during said scanning for obtaining an output signal; during said scanning, applying a first acoustic input signal to at least one of the probe or the semiconductor device; analyzing the output signal for mapping at least subsurface nanostructures below the surface of the semiconductor device; and determining the overlay error between the first patterned layer and the second patterned layer based on the analysis.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 10, 2019
    Inventors: Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20190227097
    Abstract: The present document relates to a method of performing defect detection on a self-assembled monolayer of a semiconductor element or semi-manufactured semiconductor element, using an atomic force microscopy system. The system comprises a probe with a probe tip, and is configured for positioning the probe tip relative to the element for enabling contact between the probe tip and a surface of the element. The system comprises a sensor providing an output signal indicative of a position of the probe tip. The method comprises: scanning the surface with the probe tip; applying an acoustic vibration signal to the element; obtaining the output signal indicative of the position of the probe tip; monitoring probe tip motion during said scanning for mapping the surface of the semiconductor element, and using a fraction of the output signal for mapping contact stiffness indicative of a binding strength.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 25, 2019
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Rutger Meijer Timmerman Thijssen
  • Publication number: 20190204276
    Abstract: The present invention relates to a heterodyne scanning probe microscopy method for imaging structures on or below the surface of a sample, the method including applying, using a transducer, an acoustic input signal to the sample sensing, using a probe including a probe tip in contact with the surface, an acoustic output signal, wherein the acoustic output signal is representative of acoustic surface waves induced by the acoustic input signal wherein the acoustic input signal comprises at least a first signal component having a frequency above 1 gigahertz, and wherein for detecting of the acoustic output signal the method comprises a step of applying a further acoustic input signal to at least one of the probe or the sample for obtaining a mixed acoustic signal, the further acoustic input signal including at least a second signal component having a frequency above 1 gigahertz, wherein the mixed acoustic signal comprises a third signal component having a frequency equal to a difference between the first frequen
    Type: Application
    Filed: April 13, 2017
    Publication date: July 4, 2019
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Paul Louis Maria Joseph van Neer, Rutger Meijer Timmerman Thijssen
  • Patent number: 9897626
    Abstract: A scanning probe microscope is provided comprising a scanning probe (10), a holder (5) for holding a sample (SMP) in an environment free from liquid. A scanning arrangement (20) is provided therein for inducing a relative motion of the scanning probe (10) with respect to said sample (SMP) along a surface of the sample (SMP). A driver (30) generates a drive signal (Sd) to induce an oscillating motion of the scanning probe (10) relative to the surface of the sample to be scanned. A measuring unit (40) measure a deflection of the scanning probe (10), and provides a deflection signal (S?) indicative for said deflection. An amplitude detector (50) detects an amplitude of the oscillating motion as indicated by the deflection signal (S?) and provides an amplitude signal (Sa) indicative for the amplitude. The scanning probe (10) is at least partly arranged in a liquid (L) to dampen motion of said scanning probe, and therewith has a quality factor Q which is less than or equal than 5.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: February 20, 2018
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Femke Chantal Tabak, Hamed Sadeghian Marnani, Maarten Hubertus van Es
  • Publication number: 20170307655
    Abstract: A scanning probe microscope is provided comprising a scanning probe (10), a holder (5) for holding a sample (SMP) in an environment free from liquid. A scanning arrangement (20) is provided therein for inducing a relative motion of the scanning probe (10) with respect to said sample (SMP) along a surface of the sample (SMP). A driver (30) generates a drive signal (Sd) to induce an oscillating motion of the scanning probe (10) relative to the surface of the sample to be scanned. A measuring unit (40) measure a deflection of the scanning probe (10), and provides a deflection signal (S?) indicative for said deflection. An amplitude detector (50) detects an amplitude of the oscillating motion as indicated by the deflection signal (S?) and provides an amplitude signal (Sa) indicative for the amplitude. The scanning probe (10) is at least partly arranged in a liquid (L) to dampen motion of said scanning probe, and therewith has a quality factor Q which is less than or equal than 5.
    Type: Application
    Filed: October 5, 2015
    Publication date: October 26, 2017
    Inventors: Femke Chantal TABAK, Hamed SADEGHIAN MARNANI, Maarten Hubertus VAN ES